1
|
Bao LY, Wang JS, Li L, Zhong RL, Su ZM. Theoretical Insight into the Multiple Roles of the Silyl-Phenanthroline Ligand in Ir-Catalyzed C(sp 3)-H Borylation. J Org Chem 2024; 89:18047-18059. [PMID: 39641514 DOI: 10.1021/acs.joc.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Silyl-phenanthroline (NN'Si) ligand ancillary iridium-catalyzed C(sp3)-H borylation is investigated theoretically. Density functional theory calculations clearly disclose that the (NN'Si)IrV(H)(Bpin)3 (NN'Si = 6-[(di-tert-butylsilyl)methyl]-1,10-phenanthroline) complex is a resting state, and the (NN'Si)IrIII(Bpin)2 complex serves as an active species in the catalytic cycle. The remarkably high activity of this type of a catalyst arises from the rapid reductive elimination of HBpin from (NN'Si)IrV(H)(Bpin)3 to generate the active species (NN'Si)IrIII(Bpin)2. The silyl group plays a crucial role in accelerating the crucial hydride-migration elementary step, which allows the isomerization of the (NN'Si)IrV(R)(H)(Bpin)2 intermediate to achieve the C(sp3)-B reductive elimination and afford the borylated product. Although C(sp3)-H borylation with HBpin is thermodynamically unfavorable, the Ir-dihydride intermediate (NN'Si)IrV(H)2(Bpin)2 generated after product formation is slightly more stable than resting-state (NN'Si)IrV(H)(Bpin)3 in this catalytic cycle, which is an important driving force for the HBpin reaction. Such success was not attained by many other traditional bidentate ligands. The unique regioselectivity of n-butyl ethyl ether and 2-methylheptane, induced by the NN'Si-pincer ligand, is well reproduced and the underlying reason for the selectivity is clearly elucidated.
Collapse
Affiliation(s)
- Lin-Yan Bao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Jian-Sen Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rong-Lin Zhong
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Meng LQ, Wang JS, You XX, Zhong RL, Gao FW, Su ZM. The Difference in Ir-Catalyzed C(sp 2)-H and C(sp 3)-H Bond Activation Assisted by a Directing Group: Cyclometalation via Cis- or Trans-Chelation? Inorg Chem 2024. [PMID: 39233663 DOI: 10.1021/acs.inorgchem.4c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Iridium-catalyzed C-H borylation of aromatic and aliphatic hydrocarbons assisted by a directing group was theoretically investigated. Density functional theory (DFT) calculations revealed both Ir-catalyzed C(sp2)-H and C(sp3)-H borylations via an IrIII/IrV catalytic cycle, where the tetra-coordinated (C, N)IrIII(Bpin)2 complex with two vacant sites is an active species. Dramatically, the orientation of cyclometalation for C(sp2)-H bond activation assisted by a directing group is different from the C(sp3)-H one. The activation energy (ΔG°‡ = 28.5 kcal mol-1) of the C(sp2)-H bond via trans-chelation to form cyclometalation is lower than that (41.4 kcal mol-1) via cis-chelation. In contrast, the ΔG°‡ (26.6 kcal mol-1) of the C(sp3)-H bond via cis-chelation to form cyclometalation is lower than that (34.3 kcal mol-1) via trans-chelation. In addition, the rate-determining step of Ir-catalyzed C(sp2)-H borylation is oxidative addition of the C(sp2)-H bond, while that of C(sp3)-H analogues is hydride migration. Such differences arise from not only the differences in the steric hindrance of the C(sp2) and secondary C(sp3) atoms but also the differences in the trans effect and steric effect of the two vacant sites of active species. These findings were expected to facilitate further studies on the design and synthesis of innovative ligands for Ir-catalyzed C-H borylation.
Collapse
Affiliation(s)
- Ling-Qi Meng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130012, China
| | - Jian-Sen Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiao-Xia You
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rong-Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Feng-Wei Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130012, China
| | - Zhong-Min Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Liu SC, Zhu XR, Liu DY, Fang DC. DFT calculations in solution systems: solvation energy, dispersion energy and entropy. Phys Chem Chem Phys 2023; 25:913-931. [PMID: 36519338 DOI: 10.1039/d2cp04720a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DFT calculations of reaction mechanisms in solution have always been a hot topic, especially for transition-metal-catalyzed reactions. The calculation of solvation energy is performed using either the polarizable continuum model (PCM) or the universal solvation model SMD. The PCM calculation is very sensitive to the choice of atomic radii to form a cavity, where the self-consistent isodensity PCM (SCI-PCM) has been recognized as the best choice and our IDSCRF radii can provide a similar cavity. Moving from a gas-phase case to a solution case, dispersion energy and entropy should be carefully treated. The solvent-solute dispersion is also important in solution systems, and it should be calculated together with the solute dispersion. Only half of the solvent-solute dispersion energy from the PCM calculation belongs to the solute molecules to maintain a thermal equilibrium between a solute molecule and its cavity, similar to the treatment of electrostatic energy. Relative solute dispersion energy should also be shared equally with the newly formed cavity. The entropy change from a gas phase to a liquid phase is quite large, but the modern quantum chemistry programs can only calculate the gas-phase translational entropy based on the idea-gas equation. In this review, we will provide an operable method to calculate the solution translational entropy, which has been coded in our THERMO program.
Collapse
Affiliation(s)
- Si-Cong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xin-Rui Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dan-Yang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Li XX, Wang JS, You XX, Zhong RL, Su ZM. Theoretical Insight into the Multiple Roles of LiHMDS in Pd-Catalyzed Borylation of Fluorobenzene. J Org Chem 2022; 87:16039-16046. [PMID: 36379013 DOI: 10.1021/acs.joc.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jian-Sen Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Xiao-Xia You
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Rong-Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
5
|
Dutschke PD, Tsui BTH, von Bremen-Kühne M, Morris RH, Hahn FE. Methanol-Mediated Formation of an Iridium(III) NHC/Azolato Chelate Complex: An Experimental and Theoretical Study. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Patrick D. Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - Brian Tsz Ho Tsui
- Department of Chemistry, University of Toronto, 89 Saint George St. Toronto, Ontario M5S 3H6, Canada
| | - Maximilian von Bremen-Kühne
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 89 Saint George St. Toronto, Ontario M5S 3H6, Canada
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| |
Collapse
|