1
|
Li S, Ling D, Deng Y, Zhang M, Chen L, Jin Z. Enantioselective electrophilic activation of aldehydes, esters and imines via N-heterocyclic carbene catalysis. Chem Commun (Camb) 2025; 61:5540-5555. [PMID: 40123546 DOI: 10.1039/d4cc06625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We summarize in this review the recent key progress in the NHC-catalyzed electrophilic activation of carbonyl compounds for the regioselective functionalization of saccharides, enantioselective construction of heterocycles, and asymmetric synthesis of axially and planar chiral molecules.
Collapse
Affiliation(s)
- Shiguang Li
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Dan Ling
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Youlin Deng
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Meng Zhang
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Lingzhu Chen
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
2
|
Hang NN, Tong EG, Qi T, Sun C, Ming J. Asymmetric synthesis of metallocenes with planar and central chirality by rhodium-catalyzed desymmetrization reactions. Chem Sci 2025; 16:5880-5886. [PMID: 40051649 PMCID: PMC11880838 DOI: 10.1039/d5sc00158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Metallocenes with planar and central chirality have emerged as a privileged skeleton for chiral ligand design, and such ligands have exhibited tremendous success in various asymmetric catalysis protocols. Herein, we report a rhodium/chiral diene-catalyzed asymmetric desymmetrization of 1,2-diformylmetallocenes with aryl/alkenylboronic acids to give enantio-enriched formylmetallocenes, which are diastereoisomers of Ugi-type products. This catalytic system also enables the kinetic resolution of 2-substituted 1-formylferrocene with a selectivity factor (s) of up to 4331. Compared with traditional synthesis methods, our method has the following advantages: (1) opposite diastereoselectivity; (2) catalytic asymmetric synthesis; (3) single-step construction of planar and central chirality. The synthetic utility of the present method is demonstrated by the asymmetric synthesis of a series of chiral phosphine ligands, including Josiphos- and PPFA-type ligands.
Collapse
Affiliation(s)
- Nan-Nan Hang
- Natural Products Chem-Bio Innovation Center, College of Food and Biological Engineering, College of Chemistry and Chemical Engineering, Chengdu University Chengdu 610016 China
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University 235 West University Street Hohhot 010021 China
| | - En-Guang Tong
- Natural Products Chem-Bio Innovation Center, College of Food and Biological Engineering, College of Chemistry and Chemical Engineering, Chengdu University Chengdu 610016 China
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University 235 West University Street Hohhot 010021 China
| | - Ting Qi
- School of Pharmacy, Chengdu University Chengdu 610106 China
| | - Chao Sun
- Natural Products Chem-Bio Innovation Center, College of Food and Biological Engineering, College of Chemistry and Chemical Engineering, Chengdu University Chengdu 610016 China
| | - Jialin Ming
- Natural Products Chem-Bio Innovation Center, College of Food and Biological Engineering, College of Chemistry and Chemical Engineering, Chengdu University Chengdu 610016 China
| |
Collapse
|
3
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2025; 54:1102-1124. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Zhao Z, Li W, Shan Q, Young DJ, Ren ZG, Li HX. Visible-Light-Induced Synthesis of Esters via a Self-Propagating Radical Reaction. J Org Chem 2025. [PMID: 39818844 DOI: 10.1021/acs.joc.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
We herein disclose a visible-light-induced synthesis of O-aryl esters through the cross-dehydrogenative coupling of aldehydes with phenols using BrCCl3, in which phenolate functions as both a substrate and a photosensitizer. This transition-metal- and photocatalyst-free visible-light-induced esterification is suitable for a wide range of substrates and gives moderate to excellent yields (up to 95%). Mechanistic studies provided evidence of a self-propagating radical reaction involving homolytic cleavage of the aldehydic C-H bond and the formation of acyl bromides. BrCCl3 serves as an oxidant and a hydrogen atom transfer (HAT) agent.
Collapse
Affiliation(s)
- Zelin Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Wenping Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiujie Shan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - David J Young
- James Watt School of Engineering, University of Glasgow, University Avenue, Glasgow G12 8QQ U.K
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
5
|
Yang X, Jiang S, Jin Z, Li T. Application of Asymmetric Catalysis in Chiral Pesticide Active Molecule Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17153-17165. [PMID: 39051451 DOI: 10.1021/acs.jafc.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The different configurations of chiral pesticides generally have significant influence on their biological activities. Chiral agrochemicals with high optical purities have become a prominent topic in the research field of new pesticides due to their advantages including lower toxicity, higher efficiency, and reduced residue levels. However, most commercially available pesticides that possess chiral elements are still used in their racemic forms. To date, asymmetric catalysis has emerged as a versatile tool for the enantioselective synthesis of various chiral agrochemicals and novel chiral pesticide active molecules. This perspective provides a comprehensive overview of the applications of diverse asymmetric catalytic approaches in the facile preparation of numerous novel pesticide active molecules, and our own outlook on the future development of this highly active research direction is also presented at the end of this review.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Rózga K, Błauż A, Moscoh Ayine-Tora D, Puścion E, Hartinger CG, Plażuk D, Rychlik B. Synthesis and Biological Properties of Ferrocenyl and Organic Methotrexate Derivatives. ACS OMEGA 2024; 9:33845-33856. [PMID: 39130602 PMCID: PMC11308014 DOI: 10.1021/acsomega.4c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Synthesis and biological activity of two series of modified side chain methotrexate (MTX) derivatives are presented, one with a ferrocenyl moiety inserted between the pteroyl and glutamate portions of the molecule and the other with glutamate substituted for short chain amino acids. Ferrocenyl derivatives of MTX turned out to be rather moderate inhibitors of dihydrofolate reductase (DHFR) although molecular modeling suggested more effective interactions between these compounds and the target enzyme. More interestingly, ferrocene-decorated MTX derivatives were able to impede the proliferation of four murine and human cell lines as well as their methotrexate-resistant counterparts, overcoming the multidrug resistance (MDR) barrier. They were also able to directly interact with Abcc1, an MDR protein. Of the amino acid pteroyl conjugates, the γ-aminobutyric acid derivative was an efficient inhibitor of DHFR but had no effect on cell proliferation in the concentration range studied while a taurine conjugate was a poor DHFR inhibitor but able to affect cell viability. We postulate that modification of the methotrexate side chain may be an efficient strategy to overcome efflux-dependent methotrexate resistance.
Collapse
Affiliation(s)
- Karolina Rózga
- Department
of Organic Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka, 91-403 Łódź, Poland
| | - Andrzej Błauż
- Cytometry
Lab, Department of Oncobiology and Epigenetics, Faculty of Biology
and Environmental Protection, University
of Lodz, 141/143 Pomorska, 90-236 Łódź, Poland
| | - Daniel Moscoh Ayine-Tora
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department
of Chemistry, University of Ghana, LG 56 Legon-Accra, Ghana
| | - Ernest Puścion
- Cytometry
Lab, Department of Oncobiology and Epigenetics, Faculty of Biology
and Environmental Protection, University
of Lodz, 141/143 Pomorska, 90-236 Łódź, Poland
| | - Christian G. Hartinger
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Damian Plażuk
- Department
of Organic Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka, 91-403 Łódź, Poland
| | - Błażej Rychlik
- Cytometry
Lab, Department of Oncobiology and Epigenetics, Faculty of Biology
and Environmental Protection, University
of Lodz, 141/143 Pomorska, 90-236 Łódź, Poland
| |
Collapse
|
7
|
Guan CY, Zou S, Luo C, Li ZY, Huang M, Huang L, Xiao X, Wei D, Wang MC, Mei GJ. Catalytic asymmetric synthesis of planar-chiral dianthranilides via (Dynamic) kinetic resolution. Nat Commun 2024; 15:4580. [PMID: 38811566 PMCID: PMC11136957 DOI: 10.1038/s41467-024-48947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Chirality constitutes an inherent attribute of nature. The catalytic asymmetric synthesis of molecules with central, axial, and helical chirality is a topic of intense interest and is becoming a mature field of research. However, due to the difficulty in synthesis and the lack of a prototype, less attention has been given to planar chirality arising from the destruction of symmetry on a single planar ring. Herein, we report the catalytic asymmetric synthesis of planar-chiral dianthranilides, a unique class of tub-shaped eight-membered cyclic dilactams. This protocol is enabled by cinchona alkaloid-catalyzed (dynamic) kinetic resolution. Under mild conditions, various C2- or C1-symmetric planar-chiral dianthranilides have been readily prepared in high yields with excellent enantioselectivity. These dianthranilides can serve as an addition to the family of planar-chiral molecules. Its synthetic value has been demonstrated by kinetic resolution of racemic amines via acyl transfer, enantiodivergent synthesis of the natural product eupolyphagin, and preliminary antitumor activity studies.
Collapse
Affiliation(s)
- Chun-Yan Guan
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Shuai Zou
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Can Luo
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Zhen-Yu Li
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Mingjie Huang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Lihua Huang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China.
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou, China.
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Donghui Wei
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Min-Can Wang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Guang-Jian Mei
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China.
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou, China.
| |
Collapse
|
8
|
Deng Y, Cai H, Jin J, Song C, Lv X, Jin Z, Chi YR. Synthesis of Planar Chiral Compounds Containing α-Amino Phosphonates for Antiplant Virus Applications against Potato Virus Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11917-11927. [PMID: 38743609 DOI: 10.1021/acs.jafc.3c08686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unprecedented study of the application of planar chiral compounds in antiviral pesticide development is reported. A class of multifunctional planar chiral ferrocene derivatives bearing α-amino phosphonate moieties was synthesized. These compounds, exhibiting superior optical purities, were subsequently subjected to antiviral evaluations against the notable plant pathogen potato virus Y (PVY). The influence of the absolute configurations of the planar chiral compounds on their antiviral bioactivities was significant. A number of these enantiomerically enriched planar chiral molecules demonstrated superior anti-PVY activities. Specifically, compound (Sp, R)-9n displayed extraordinary curative activities against PVY, with a 50% maximal effective concentration (EC50) of 216.11 μg/mL, surpassing the efficacy of ningnanmycin (NNM, 272.74 μg/mL). The protective activities of compound (Sp, R)-9n had an EC50 value of 152.78 μg/mL, which was better than that of NNM (413.22 μg/mL). The molecular docking and defense enzyme activity tests were carried out using the planar chiral molecules bearing different absolute configurations to investigate the mechanism of their antiviral activities against PVY. (Sp, R)-9n, (Sp, R)-9o, and NMM all showed stronger affinities to the PVY-CP than the (Rp, S)-9n. Investigations into the mechanisms revealed that the planar chiral configurations of the compounds played pivotal roles in the interactions between the PVY-CP molecules and could augment the activities of the defense enzymes. This study contributes substantial insights into the role of planar chirality in defending plants against viral infections.
Collapse
Affiliation(s)
- Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Chaoyang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaokang Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
9
|
Liu Y, Yuan L, Dai L, Zhu Q, Zhong G, Zeng X. Carbene-Catalyzed Atroposelective Construction of Chiral Diaryl Ethers. J Org Chem 2024. [PMID: 38738853 DOI: 10.1021/acs.joc.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Atropoisomeric chemotypes of diaryl ethers-related scaffolds are prevalent in naturally active compounds. Nevertheless, there remains considerable research to be carried out on the catalytic asymmetric synthesis of these axially chiral molecules. In this instance, we disclose an N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. NHC desymmetrization produces axially chiral diaryl ether atropisomers with high yields and enantioselectivities in moderate circumstances. Chiral diaryl ether compounds may be precursors for highly functionalized diaryl ethers with bioactivity and chiral ligands for asymmetric catalysis.
Collapse
Affiliation(s)
- Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lutong Yuan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Linlong Dai
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
10
|
Huang Y, Peng X, Li T. Recent Advances in NHC-Catalyzed Chemoselective Activation of Carbonyl Compounds. Chem Asian J 2024; 19:e202400097. [PMID: 38451172 DOI: 10.1002/asia.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
N-Heterocyclic carbenes (NHCs) catalysts have been employed as effective tools in the development of various reactions, which have made notable contributions in developing diverse reaction modes and generating significant functionalized molecules. This review provides an overview of the recent advancements in the chemo- and regioselective activation of different aldehydes using NHCs, categorized into five parts based on the different activation modes. A brief conclusion and outlook is provided to stimulate the development of novel activation modes for accessing functional molecules.
Collapse
Affiliation(s)
- Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiaolin Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
11
|
Dočekal V, Koucký F, Císařová I, Veselý J. Organocatalytic desymmetrization provides access to planar chiral [2.2]paracyclophanes. Nat Commun 2024; 15:3090. [PMID: 38600078 PMCID: PMC11006895 DOI: 10.1038/s41467-024-47407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Planar chiral [2.2]paracyclophanes consist of two functionalized benzene rings connected by two ethylene bridges. These organic compounds have a wide range of applications in asymmetric synthesis, as both ligands and catalysts, and in materials science, as polymers, energy materials and dyes. However, these molecules can only be accessed by enantiomer separation via (a) time-consuming chiral separations and (b) kinetic resolution approaches, often with a limited substrate scope, yielding both enantiomers. Here, we report a simple, efficient, metal-free protocol for organocatalytic desymmetrization of prochiral diformyl[2.2]paracyclophanes. Our detailed experimental mechanistic study highlights differences in the origin of enantiocontrol of pseudo-para and pseudo-gem diformyl derivatives in NHC catalyzed desymmetrizations based on whether a key Breslow intermediate is irreversibly or reversibly formed in this process. This gram-scale reaction enables a wide range of follow-up derivatizations of carbonyl groups, producing various enantiomerically pure planar chiral [2.2]paracyclophane derivatives, thereby underscoring the potential of this method.
Collapse
Affiliation(s)
- Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic.
| | - Filip Koucký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic.
| |
Collapse
|
12
|
Wu Y, Guan X, Zhao H, Li M, Liang T, Sun J, Zheng G, Zhang Q. Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification. Chem Sci 2024; 15:4564-4570. [PMID: 38516093 PMCID: PMC10952084 DOI: 10.1039/d3sc06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 03/23/2024] Open
Abstract
Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xin Guan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Huaqiu Zhao
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mingrui Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Tianlong Liang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
13
|
Li J, Dong Z, Chen Y, Yang Z, Yan X, Wang M, Li C, Zhao C. N-Heterocyclic carbene-catalyzed enantioselective synthesis of planar-chiral cyclophanes via dynamic kinetic resolution. Nat Commun 2024; 15:2338. [PMID: 38491016 PMCID: PMC10943026 DOI: 10.1038/s41467-024-46376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
Planar-chiral cyclophanes have gained considerable concerns for drug discovery due to their unique conformational strain and 3D structure. However, the enantioselective synthesis of planar-chiral cyclophanes is a long-standing challenge for the synthetic community. We herein describe an N-heterocyclic carbene (NHC)-catalyzed asymmetric construction of planar-chiral cyclophanes. This transformation occurs through a dynamic kinetic resolution (DKR) process to convert racemic substrates into planar-chiral macrocycle scaffolds in good to high yields with high to excellent enantioselectivities. The ansa chain length and aromatic ring substituent size is crucial to achieve the DKR approach. Controlled experiments and DFT calculations were performed to clarify the DKR process.
Collapse
Affiliation(s)
- Jiayan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ziyang Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhanhui Yang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinen Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Li L, Ti W, Miao T, Ma J, Lin A, Chu Q, Gao S. Atroposelective Synthesis of Axially Chiral Diaryl Ethers by N-Heterocyclic-Carbene-Catalyzed Sequentially Desymmetric/Kinetic Resolution Process. J Org Chem 2024; 89:4067-4073. [PMID: 38391391 DOI: 10.1021/acs.joc.3c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We describe herein an N-heterocyclic-carbene-catalyzed atroposelective synthesis of axially chiral diaryl ethers. Through a sequentially enantioselective desymmetric process and a kinetic resolution process, the products could be constructed in good yields with excellent enantiopurities. Both alcohols and phenols were compatible with this catalytic system. The axially chiral carboxylic acids derived from the esters were proven to be potential chiral ligands for asymmetric synthesis, for example, Rh(III)-catalyzed enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Libo Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianshu Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian Chu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
15
|
Wang J, Wang M, Wen Y, Teng P, Li C, Zhao C. N-Heterocyclic Carbene-Catalyzed Highly Enantioselective Macrolactonization to Access Planar-Chiral Macrocycles. Org Lett 2024; 26:1040-1045. [PMID: 38295348 DOI: 10.1021/acs.orglett.3c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
An N-heterocyclic carbene (NHC)-catalyzed atroposelective macrolactonization has been disclosed. This approach affords planar-chiral macrocycles in high yields with excellent enantioselectivities over a broad substrate scope. Controlled experiments suggest that the enantioselectivity might arise from the cation-n interaction between the acyl azolium and the electron-rich moiety in the substrate. This mechanism is supported by density functional theory calculations, which also suggest an important π-π interaction in stabilizing the transition state.
Collapse
Affiliation(s)
- Jiaming Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yilu Wen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang 310058, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Shee S, Shree Ranganathappa S, Gadhave MS, Gogoi R, Biju AT. Enantioselective Synthesis of C-O Axially Chiral Diaryl Ethers by NHC-Catalyzed Atroposelective Desymmetrization. Angew Chem Int Ed Engl 2023; 62:e202311709. [PMID: 37986240 DOI: 10.1002/anie.202311709] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Axially chiral diaryl ethers, a distinguished class of atropisomers possessing unique dual C-O axis, hold immense potential for diverse research domains. In contrast to the catalytic enantioselective synthesis of conventional single axis bearing atropisomers, the atroposelective synthesis of axially chiral ethers containing flexible C-O axis remains a significant challenge. Herein, we demonstrate the first N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. Mechanistically, the reaction proceeds via NHC-catalyzed desymmetrization strategy to afford the corresponding axially chiral diaryl ether atropisomers in good yields and high enantioselectivities under mild conditions. The derivatization of the synthesized product expands the utility of present strategy via access to a library of C-O axially chiral compounds. The temperature dependency and preliminary investigations on the racemization barrier of C-O bonds are also presented.
Collapse
Affiliation(s)
- Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | | | - Mahesh S Gadhave
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | - Romin Gogoi
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| |
Collapse
|
17
|
Jiang S, Wang W, Mou C, Zou J, Jin Z, Hao G, Chi YR. Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors. Nat Commun 2023; 14:7381. [PMID: 37968279 PMCID: PMC10651860 DOI: 10.1038/s41467-023-43198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
The development of suitable electron donors is critical to single-electron-transfer (SET) processes. The use of heteroatom-centered anions as super-electron-donors (SEDs) for direct SET reactions has rarely been studied. Here we show that heteroatom anions can be applied as SEDs to initiate radical reactions for facile synthesis of 3-substituted benzofurans. Phosphines, thiols and anilines bearing different substitution patterns work well in this inter-molecular radical coupling reaction and the 3-functionalized benzofuran products bearing heteroatomic functionalities are given in moderate to excellent yields. The reaction mechanism is elucidated via control experiments and computational methods. The afforded products show promising applications in both organic synthesis and pesticide development.
Collapse
Affiliation(s)
- Shichun Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Juan Zou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
18
|
Recent progress on the tridentate iron complex catalysts for ethylene oligo-/polymerization. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Chen J, Han J, Zhang J, Li L, Zhang Z, Yang Y, Jiang Y. Rhodium/Amine Dual Catalytic System for Reassembling C≡C Bonds of Conjugated Alkynes with Cyclopropenes via Cutting/Insertion Cascade. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jie Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiabin Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ling Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Liu H, Zhou H, Chen X, Xu J. N-Heterocyclic Carbene-Catalyzed Desymmetrization of Siladials To Access Silicon-Stereogenic Organosilanes. J Org Chem 2022; 87:16127-16137. [DOI: 10.1021/acs.joc.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
21
|
Liu Y, Wang Y, Wu X, Chi YR. Exploring Molecular Complexity by N‐Heterocyclic Carbene Organocatalysis: New Activation and Reaction Diversity. CHEM REC 2022:e202200219. [DOI: 10.1002/tcr.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yonggui Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University, Huaxi District Guiyang 550025 China
| | - Yanyan Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University, Huaxi District Guiyang 550025 China
| | - Xingxing Wu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University, Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University, Huaxi District Guiyang 550025 China
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
22
|
Yang X, Sun J, Huang X, Jin Z. Asymmetric Synthesis of Structurally Sophisticated Spirocyclic Pyrano[2,3- c]pyrazole Derivatives Bearing a Chiral Quaternary Carbon Center. Org Lett 2022; 24:5474-5479. [PMID: 35857420 DOI: 10.1021/acs.orglett.2c02211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A carbene-catalyzed enantio- and diastereoselective [2 + 4] cycloaddition reaction is developed for quick and efficient access to structurally complex multicyclic pyrano[2,3-c]pyrazole molecules. The reaction tolerates a broad scope of substrates bearing various substitution patterns, with the multicyclic pyrano[2,3-c]pyrazole products afforded in generally good to excellent yields and optical purities. The chiral molecules obtained from this approach has found promising applications in the development of novel bacteriacides for plant protection.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
23
|
Zhou M, Liu J, Deng R, Wang Q, Wu S, Zheng P, Chi YR. Construction of Tetrasubstituted Silicon-Stereogenic Silanes via Conformational Isomerization and N-Heterocyclic Carbene-Catalyzed Desymmetrization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mali Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingyun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuquan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|