1
|
He R, Wang Y, Li M, Liu J, Gu Y, Wang W, Liu Q, Tsubaki N, Wu M. Tailoring the CO 2 Hydrogenation Performance of Fe-Based Catalyst via Unique Confinement Effect of the Carbon Shell. Chemistry 2023; 29:e202301918. [PMID: 37641166 DOI: 10.1002/chem.202301918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Even though Fe-based catalysts have been widely employed for CO2 hydrogenation into hydrocarbons, oxygenates, liquid fuels, etc., the precise regulation of their physicochemical properties is needed to enhance the catalytic performance. Herein, under the guidance of the traditional concept in heterogeneous catalysis-confinement effect, a core-shell structured catalyst Na-Fe3 O4 @C is constructed to boost the CO2 hydrogenation performance. Benefiting from the carbon-chain growth limitation, tailorable H2 /CO2 ratio on the catalytic interface, and unique electronic property that all endowed by the confinement effect, the selectivity and space-time yield of light olefins (C2 = -C4 = ) are as high as 47.4 % and 15.9 g molFe -1 h-1 , respectively, which are all notably higher than that from the shell-less counterpart. The function mechanism of the confinement effect in Fe-based catalysts are clarified in detail by multiple characterization and density functional theory (DFT). This work may offer a new prospect for the rational design of CO2 hydrogenation catalyst.
Collapse
Affiliation(s)
- Ruosong He
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yang Wang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Meng Li
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianxin Liu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yongqiang Gu
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Wenhang Wang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Qiang Liu
- National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jinan, 250014, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
2
|
Orlyk S, Kyriienko P, Kapran A, Chedryk V, Balakin D, Gurgul J, Zimowska M, Millot Y, Dzwigaj S. CO2-Assisted Dehydrogenation of Propane to Propene over Zn-BEA Zeolites: Impact of Acid–Base Characteristics on Catalytic Performance. Catalysts 2023. [DOI: 10.3390/catal13040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Research results about the influence of BEA zeolite preliminary dealumination on the acid–base characteristics and catalytic performance of 1% Zn-BEA compositions in propane dehydrogenation with CO2 are presented. The catalyst samples, prepared through a two-step post-synthesis procedure involving partial or complete dealumination of the BEA specimen followed by the introduction of Zn2+ cations into the T-positions of the zeolite framework, were characterized using XRD, XPS, MAS NMR, SEM/EDS, low-temperature N2 ad/desorption, C3H8/C3H6 (CO2, NH3)-TPD, TPO-O2, and FTIR-Py techniques. Full dealumination resulted in the development of a mesoporous structure and specific surface area (BET) with a twofold decrease in the total acidity and basicity of Zn-BEA, and the formation of Lewis acid sites and basic sites of predominantly medium strength, as well as the removal of Brønsted acid sites from the surface. In the presence of the ZnSiBEA catalyst, which had the lowest total acidity and basicity, the obtained selectivity of 86–94% and yield of 30–33% for propene (at 923 K) exceeded the values for ZnAlSiBEA and ZnAlBEA. The results of propane dehydrogenation with/without carbon dioxide showed the advantages of producing the target olefin in the presence of CO2 using Zn-BEA catalysts.
Collapse
|