1
|
Penner M, Klein OJ, Gantz M, Nintzel FEH, Prowald AC, Boss S, Barker P, Dupree P, Hollfelder F. Fluorogenic, Subsingle-Turnover Monitoring of Enzymatic Reactions Involving NAD(P)H Provides a Generalized Platform for Directed Ultrahigh-Throughput Evolution of Biocatalysts in Microdroplets. J Am Chem Soc 2025; 147:10903-10915. [PMID: 40127491 PMCID: PMC11969528 DOI: 10.1021/jacs.4c11804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Enzyme engineering and discovery are crucial for a sustainable future bioeconomy. Harvesting new biocatalysts from large libraries through directed evolution or functional metagenomics requires accessible, rapid assays. Ultrahigh-throughput screening formats often require optical readouts, leading to the use of model substrates that may misreport target activity and necessitate bespoke synthesis. This is a particular challenge when screening glycosyl hydrolases, which leverage molecular recognition beyond the target glycosidic bond, so that complex chemical synthesis would have to be deployed to build a fluoro- or chromogenic substrate. In contrast, coupled assays represent a modular "plug-and-play" system: any enzyme-substrate pairing can be investigated, provided the reaction can produce a common intermediate which links the catalytic reaction to a detection cascade readout. Here, we establish a detection cascade producing a fluorescent readout in response to NAD(P)H via glutathione reductase and a subsequent thiol-mediated uncaging reaction, with a low nanomolar detection limit in plates. Further scaling down to microfluidic droplet screening is possible: the fluorophore is leakage-free and we report 3 orders of magnitude-improved sensitivity compared to absorbance-based systems, with a resolution of 361,000 product molecules per droplet. Our approach enables the use of nonfluorogenic substrates in droplet-based enrichments, with applicability in screening for glycosyl hydrolases and imine reductases (IREDs). To demonstrate the assay's readiness for combinatorial experiments, one round of directed evolution was performed to select a glycosidase processing a natural substrate, beechwood xylan, with improved kinetic parameters from a pool of >106 mutagenized sequences.
Collapse
Affiliation(s)
- Matthew Penner
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Oskar James Klein
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Maximilian Gantz
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Friederike E. H. Nintzel
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Anne-Cathrin Prowald
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Sally Boss
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paul Barker
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paul Dupree
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
2
|
Gantz M, Mathis SV, Nintzel FEH, Lio P, Hollfelder F. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering. Faraday Discuss 2024; 252:89-114. [PMID: 39133073 PMCID: PMC11318516 DOI: 10.1039/d4fd00065j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024]
Abstract
Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh throughput (uHT) screening, next generation sequencing and machine learning may create alternative routes to engineered proteins, where functional information linked to specific sequences is interpreted and extrapolated in silico. In particular, the miniaturisation of functional tests in water-in-oil emulsion droplets with picoliter volumes and their rapid generation and analysis (>1 kHz) allows screening of >107-membered libraries in a day. Subsequently, decoding the selected clones by short or long-read sequencing methods leads to large sequence-function datasets that may allow extrapolation from experimental directed evolution to further improved mutants beyond the observed hits. In this work, we explore experimental strategies for how to draw up 'fitness landscapes' in sequence space with uHT droplet microfluidics, review the current state of AI/ML in enzyme engineering and discuss how uHT datasets may be combined with AI/ML to make meaningful predictions and accelerate biocatalyst engineering.
Collapse
Affiliation(s)
- Maximilian Gantz
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Simon V Mathis
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Friederike E H Nintzel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pietro Lio
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
3
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
4
|
Scheele R, Weber Y, Nintzel FEH, Herger M, Kaminski TS, Hollfelder F. Ultrahigh Throughput Evolution of Tryptophan Synthase in Droplets via an Aptamer Sensor. ACS Catal 2024; 14:6259-6271. [PMID: 38660603 PMCID: PMC11036396 DOI: 10.1021/acscatal.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Tryptophan synthase catalyzes the synthesis of a wide array of noncanonical amino acids and is an attractive target for directed evolution. Droplet microfluidics offers an ultrahigh throughput approach to directed evolution (up to 107 experiments per day), enabling the search for biocatalysts in wider regions of sequence space with reagent consumption minimized to the picoliter volume (per library member). While the majority of screening campaigns in this format on record relied on an optically active reaction product, a new assay is needed for tryptophan synthase. Tryptophan is not fluorogenic in the visible light spectrum and thus falls outside the scope of conventional droplet microfluidic readouts, which are incompatible with UV light detection at high throughput. Here, we engineer a tryptophan DNA aptamer into a sensor to quantitatively report on tryptophan production in droplets. The utility of the sensor was validated by identifying five-fold improved tryptophan synthases from ∼100,000 protein variants. More generally, this work establishes the use of DNA-aptamer sensors with a fluorogenic read-out in widening the scope of droplet microfluidic evolution.
Collapse
Affiliation(s)
- Remkes
A. Scheele
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Yanik Weber
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | | | - Michael Herger
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Tomasz S. Kaminski
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| |
Collapse
|
5
|
Strutt R, Xiong B, Abegg VF, Dittrich PS. Open microfluidics: droplet microarrays as next generation multiwell plates for high throughput screening. LAB ON A CHIP 2024; 24:1064-1075. [PMID: 38356285 PMCID: PMC10898417 DOI: 10.1039/d3lc01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Multiwell plates are prominent in the biological and chemical sciences; however, they face limitations in terms of throughput and deployment in emerging bioengineering fields. Droplet microarrays, as an open microfluidic technology, organise tiny droplets typically in the order of thousands, on an accessible plate. In this perspective, we summarise current approaches for generating droplets, fluid handling on them, and analysis within droplet microarrays. By enabling unique plate engineering opportunities, demonstrating the necessary experimental procedures required for manipulating and interacting with biological cells, and integrating with label-free analytical techniques, droplet microarrays can be deployed across a more extensive experimental domain than what is currently covered by multiwell plates. Droplet microarrays thus offer a solution to the bottlenecks associated with multiwell plates, particularly in the areas of biological cultivation and high-throughput compound screening.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Bijing Xiong
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Vanessa Fabienne Abegg
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
Ashcroft E, Munoz-Munoz J. A review of the principles and biotechnological applications of glycoside hydrolases from extreme environments. Int J Biol Macromol 2024; 259:129227. [PMID: 38185295 DOI: 10.1016/j.ijbiomac.2024.129227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
It is apparent that Biocatalysts are shaping the future by providing a more sustainable approach to established chemical processes. Industrial processes rely heavily on the use of toxic compounds and high energy or pH reactions, factors that both contributes to the worsening climate crisis. Enzymes found in bacterial systems and other microorganisms, from the glaciers of the Arctic to the sandy deserts of Abu Dhabi, provide key tools and understanding as to how we can progress in the biotechnology sector. These extremophilic bacteria harness the adaptive enzymes capable of withstanding harsh reaction conditions in terms of stability and reactivity. Carbohydrate-active enzymes, including glycoside hydrolases or carbohydrate esterases, are extremely beneficial for the presence and future of biocatalysis. Their involvement in the industry spans from laundry detergents to paper and pulp treatment by degrading oligo/polysaccharides into their monomeric products in almost all detrimental environments. This includes exceedingly high temperatures, pHs or even in the absence of water. In this review, we discuss the structure and function of different glycoside hydrolases from extremophiles, and how they can be applied to industrial-scale reactions to replace the use of harsh chemicals, reduce waste, or decrease energy consumption.
Collapse
Affiliation(s)
- Ellie Ashcroft
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom.
| | - Jose Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
7
|
Paul S, Gupta M, Kumar Mahato A, Karak S, Basak A, Datta S, Banerjee R. Covalent Organic Frameworks for the Purification of Recombinant Enzymes and Heterogeneous Biocatalysis. J Am Chem Soc 2024; 146:858-867. [PMID: 38159294 DOI: 10.1021/jacs.3c11169] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recombinant enzymes have gained prominence due to their diverse functionalities and specificity and are often a greener alternative in biocatalysis. This context makes purifying recombinant enzymes from host cells and other impurities crucial. The primary goal is to isolate the pure enzyme of interest and ensure its stability under ambient conditions. Covalent organic frameworks (COFs), renowned for their well-ordered structure and permeability, offer a promising approach for purifying histidine-tagged (His-tagged) enzymes. Furthermore, immobilizing enzymes within COFs represents a growing field in heterogeneous biocatalysis. In this study, we have developed a flow-based technology utilizing a nickel-infused covalent organic framework (Ni-TpBpy COF) to combine two distinct processes: the purification of His-tagged enzymes and the immobilization of enzymes simultaneously. Our work primarily focuses on the purification of three His-tagged enzymes β-glucosidase, cellobiohydrolase, and endoglucanase as well as two proteins with varying molecular weights, namely, green fluorescent protein (27 kDa) and BG Rho (88 kDa). We employed Ni-TpBpy as a column matrix to showcase the versatility of our system. Additionally, we successfully obtained a Ni-TpBpy COF immobilized with enzymes, which can serve as a heterogeneous catalyst for the hydrolysis of p-nitrophenyl-β-d-glucopyranoside and carboxymethylcellulose. These immobilized enzymes demonstrated catalytic activity comparable to that of their free counterparts, with the added advantages of recyclability and enhanced stability under ambient conditions for an extended period, ranging from 60 to 90 days. This contrasts with the free enzymes, which do not maintain their activity as effectively over time.
Collapse
Affiliation(s)
- Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Mani Gupta
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Supratim Datta
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|