1
|
Liu C, Li T, Dai X, Zhao J, Zhang L, Cui X. Mechanism regulation over dual-atom catalyst enables high-performance oxidative alcohol esterification. Sci Bull (Beijing) 2025; 70:78-89. [PMID: 39277521 DOI: 10.1016/j.scib.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The development of heterogeneous catalysts with well-defined uniform isolated or multiple active sites is of great importance for understanding catalytic performances and studying reaction mechanisms. Herein, we present a CoCu dual-atom catalyst (CoCu-DAC) where bonded Co-Cu dual-atom sites are embedded in N-doped carbon matrix with a well-defined Co(OH)CuN6 structure. The CoCu-DAC exhibits higher catalytic activity and selectivity than the Co single-atom catalyst (Co-SAC) and Cu single-atom catalyst (Cu-SAC) counterparts in the catalytic oxidative esterification of alcohols and a variety of methyl and alkyl esters have been successfully synthesized. Kinetic studies reveal that the activation energy (29.7 kJ mol-1) over CoCu-DAC is much lower than that over Co-SAC (38.4 kJ mol-1) and density functional theory (DFT) studies disclose that two different mechanisms are regulated over CoCu-DAC and Co-SAC/Cu-SAC in three-step esterification of alcohols. The bonded Co-Cu and adjacent N species efficiently catalyze the elementary reactions of alcohol dehydrogenation, O2 activation and ester formation, respectively. The stepwise alkoxy pathway (O-H and C-H scissions) is preferred for both alcohol dehydrogenation and ester formation over CoCu-DAC, while the progressive hydroxylalkyl pathway (C-H and O-H scissions) for alcohol dehydrogenation and simultaneous hemiacetal dehydrogenation are favored over Co-SAC and Cu-SAC. Characteristic peaks in the Fourier transform infrared spectroscopy analysis may confirm the formation of the metal-C intermediate and the hydroxylalkyl pathway over Co-SAC.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Teng Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jian Zhao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liping Zhang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjiang Cui
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
2
|
Wittstock G, Bäumer M, Dononelli W, Klüner T, Lührs L, Mahr C, Moskaleva LV, Oezaslan M, Risse T, Rosenauer A, Staubitz A, Weissmüller J, Wittstock A. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem Rev 2023; 123:6716-6792. [PMID: 37133401 PMCID: PMC10214458 DOI: 10.1021/acs.chemrev.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Marcus Bäumer
- University
of Bremen, Institute for Applied
and Physical Chemistry, 28359 Bremen, Germany
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
| | - Wilke Dononelli
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Bremen Center for
Computational Materials Science, Hybrid Materials Interfaces Group, Am Fallturm 1, Bremen 28359, Germany
| | - Thorsten Klüner
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Lukas Lührs
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
| | - Christoph Mahr
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Lyudmila V. Moskaleva
- University
of the Free State, Department of Chemistry, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Mehtap Oezaslan
- Technical
University of Braunschweig Institute of Technical Chemistry, Technical Electrocatalysis Laboratory, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Thomas Risse
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Arnimallee
22, 14195 Berlin, Germany
| | - Andreas Rosenauer
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Anne Staubitz
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| | - Jörg Weissmüller
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
- Helmholtz-Zentrum
Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Arne Wittstock
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| |
Collapse
|
3
|
Chouhan KK, Chowdhury D, Mukherjee A. Cyclotrimetaphosphate-assisted ruthenium catalyst for the hydration of nitriles and oxidation of primary amines to amides under aerobic conditions in water. Org Biomol Chem 2023; 21:2429-2439. [PMID: 36876451 DOI: 10.1039/d3ob00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Amide bonds are ubiquitous and regarded as an essential constituent of many biologically active drug molecules and fine chemicals. We report a practical and operationally simple ruthenium-based catalytic system for the hydration of nitriles and aerobic oxidation of primary amines to the corresponding amides. Both reactions proceed without any external oxidant in water under aerobic conditions and exhibit a broad substrate scope. The mechanistic investigation was executed with the aid of control experiments and kinetic and spectroscopic studies of the reaction mixture.
Collapse
Affiliation(s)
- Kishor Kumar Chouhan
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India.
| | - Deep Chowdhury
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India.
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India.
| |
Collapse
|
4
|
Muhammad F, Huang F, Cheng Y, Chen X, Wang Q, Zhu C, Zhang Y, Yang X, Wang P, Wei H. Nanoceria as an Electron Reservoir: Spontaneous Deposition of Metal Nanoparticles on Oxides and Their Anti-inflammatory Activities. ACS NANO 2022; 16:20567-20576. [PMID: 36394328 DOI: 10.1021/acsnano.2c07306] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing metal-metal oxide heteronanostructures with synergistic and superior activities (unattainable in the case of a single entity) is of great interest for a wide range of technological applications. Traditional synthetic strategies typically require reducing agents, stabilizing ligands, or high temperature reductive treatment to produce oxide-supported metals. Herein, a facile noble metal deposition strategy is developed to produce silver, gold, and platinum nanocrystals on the surface of hollow mesoporous cerium oxide nanospheres without any pretreatment. Unlike the galvanic replacement reaction, the developed protocol employs the innate reductive potential of CeO2 to produce a high density of ultrafine noble metal nanocrystals homogeneously immobilized onto the surface of CeO2 nanospheres. The multienzyme-like activities (i.e., superoxide dismutase-like and catalase-like) of CeO2@metal nanostructures, originating from CeO2 and metal nanoparticles, were effectively utilized for anti-inflammatory therapies in two in vivo models. This oxygen vacancy-mediated reduction strategy can be generalized to produce diverse metal-metal oxide nanostructures for a wide range of applications.
Collapse
Affiliation(s)
- Faheem Muhammad
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Futao Huang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuan Cheng
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiwen Chen
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chenxin Zhu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaohan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Wang R, Lu K, Zhang J, Li X, Zheng Z. Regulation of the Co–N x Active Sites of MOF-Templated Co@NC Catalysts via Au Doping for Boosting Oxidative Esterification of Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruiyi Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Kuan Lu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincheng Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfeng Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Chouhan KK, Chowdhury D, Mukherjee A. Transamidation of aromatic amines with formamides using cyclic dihydrogen tetrametaphosphate. Org Biomol Chem 2022; 20:7929-7935. [PMID: 36155708 DOI: 10.1039/d2ob00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide fragments are found to be one of the key constituents in a wide range of natural products and pharmacologically active compounds. Herein, we report a simple and efficient procedure for transamidation with a cyclic dihydrogen tetrametaphosphate. The protocol is simple, does not require any additives, and encompasses a broad substrate scope. To comprehend the mechanism of the present methodology, detailed spectroscopic and kinetic studies were undertaken.
Collapse
Affiliation(s)
- Kishor Kumar Chouhan
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Deep Chowdhury
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Arup Mukherjee
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| |
Collapse
|
7
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Chipoco Haro DA, Muramoto E, Madix RJ, Rodriguez-Reyes JCF. The Reaction of Alkynes with Model Gold Catalysts: Generation of Acetylides, Self-coupling and Surface Decomposition. Catal Letters 2022. [DOI: 10.1007/s10562-021-03882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Eagan NM, Luneau M, Friend CM, Madix RJ. Exploiting the Liquid Phase to Enhance the Cross-Coupling of Alcohols over Nanoporous Gold Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathaniel M. Eagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Filie A, Shirman T, Foucher AC, Stach EA, Aizenberg M, Aizenberg J, Friend CM, Madix RJ. Dilute Pd-in-Au alloy RCT-SiO2 catalysts for enhanced oxidative methanol coupling. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Mahdavi-Shakib A, Sempel J, Hoffman M, Oza A, Bennett E, Owen JS, Rahmani Chokanlu A, Frederick BG, Austin RN. Au/TiO 2-Catalyzed Benzyl Alcohol Oxidation on Morphologically Precise Anatase Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11793-11804. [PMID: 33660991 DOI: 10.1021/acsami.0c20442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Au nanoparticles (NP) on TiO2 have been shown to be effective catalysts for selective oxidation reactions by using molecular oxygen. In this work, we have studied the influence of support morphology on the catalytic activity of Au/TiO2 catalysts. Two TiO2 anatase supports, a nanoplatelet-shaped material with predominantly the {001} facet exposed and a truncated bipyramidal-shaped nanoparticle with predominantly the {101} facet exposed, were prepared by using a nonaqueous solvothermal method and characterized by using DRIFTS, XPS, and TEM. Au nanoparticles were deposited on the supports by using the deposition-precipitation method, and particle sizes were determined by using STEM. Au nanoparticles were smaller on the support with the majority of the {101} facet exposed. The resulting materials were used to catalyze the aerobic oxidation of benzyl alcohol and trifluoromethylbenzyl alcohol. Support morphology impacts the catalytic activity of Au/TiO2; reaction rates for reactions catalyzed by the predominantly {101} material were higher. Much of the increased reactivity can be explained by the presence of smaller Au particles on the predominantly {101} material, providing more Au/TiO2 interface area, which is where catalysis occurs. The remaining modest differences between the two catalysts are likely due to geometric effects as Hammett slopes show no evidence for electronic differences between the Au particles on the different materials.
Collapse
Affiliation(s)
- Akbar Mahdavi-Shakib
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Janine Sempel
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Maya Hoffman
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Aisha Oza
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Ellie Bennett
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Brian G Frederick
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Reece C, Madix RJ. Moving from Fundamental Knowledge of Kinetics and Mechanisms on Surfaces to Prediction of Catalyst Performance in Reactors. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Robert J. Madix
- School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02134, United States
| |
Collapse
|
13
|
Behravesh E, Melander MM, Wärnå J, Salmi T, Honkala K, Murzin DY. Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. J Catal 2021. [DOI: 10.1016/j.jcat.2020.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Wisniewska J, Sobczak I, Ziolek M. The effect of the calcium dopant on the activity and selectivity of gold catalysts supported on SBA-15 and Nb-containing SBA-15 in methanol oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02135k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold catalysts based on SBA-15, NbSBA-15 (Nb introduced in one pot synthesis) and Nb2O5/SBA-15 (prepared by impregnation of SBA-15) were doped with calcium species introduced before Au loading and were tested in gas-phase methanol oxidation.
Collapse
Affiliation(s)
- Joanna Wisniewska
- Faculty of Chemistry
- Adam Mickiewicz University, Poznań
- 61-614 Poznań
- Poland
| | - Izabela Sobczak
- Faculty of Chemistry
- Adam Mickiewicz University, Poznań
- 61-614 Poznań
- Poland
| | - Maria Ziolek
- Faculty of Chemistry
- Adam Mickiewicz University, Poznań
- 61-614 Poznań
- Poland
| |
Collapse
|
15
|
Profile of Cynthia Friend. Proc Natl Acad Sci U S A 2020; 117:24010-24012. [DOI: 10.1073/pnas.2017461117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Trimpalis A, Giannakakis G, Cao S, Flytzani-Stephanopoulos M. NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Mahdavi-Shakib A, Sempel J, Babb L, Oza A, Hoffman M, Whittaker TN, Chandler BD, Austin RN. Combining Benzyl Alcohol Oxidation Saturation Kinetics and Hammett Studies as Mechanistic Tools for Examining Supported Metal Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akbar Mahdavi-Shakib
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Janine Sempel
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Lauren Babb
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Aisha Oza
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Maya Hoffman
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Todd N. Whittaker
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Bert D. Chandler
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| |
Collapse
|
18
|
Modification of Au nanoparticles electronic state by MOFs defect engineering to realize highly active photocatalytic oxidative esterification of benzyl alcohol with methanol. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Wang R, Liu H, Fan C, Gao J, Chen C, Zheng Z. Selective oxidative esterification of alcohols over Au-Pd/graphene. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Gandomkar S, Jost E, Loidolt D, Swoboda A, Pickl M, Elaily W, Daniel B, Fraaije MW, Macheroux P, Kroutil W. Biocatalytic Enantioselective Oxidation of Sec-Allylic Alcohols with Flavin-Dependent Oxidases. Adv Synth Catal 2019; 361:5264-5271. [PMID: 31894182 PMCID: PMC6919931 DOI: 10.1002/adsc.201900921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/26/2019] [Indexed: 01/17/2023]
Abstract
The oxidation of allylic alcohols is challenging to perform in a chemo- as well as stereo-selective fashion at the expense of molecular oxygen using conventional chemical protocols. Here, we report the identification of a library of flavin-dependent oxidases including variants of the berberine bridge enzyme (BBE) analogue from Arabidopsis thaliana (AtBBE15) and the 5-(hydroxymethyl)furfural oxidase (HMFO) and its variants (V465T, V465S, V465T/W466H and V367R/W466F) for the enantioselective oxidation of sec-allylic alcohols. While primary and benzylic alcohols as well as certain sugars are well known to be transformed by flavin-dependent oxidases, sec-allylic alcohols have not been studied yet except in a single report. The model substrates investigated were oxidized enantioselectively in a kinetic resolution with an E-value of up to >200. For instance HMFO V465S/T oxidized the (S)-enantiomer of (E)-oct-3-en-2-ol (1 a) and (E)-4-phenylbut-3-en-2-ol with E>200 giving the remaining (R)-alcohol with ee>99% at 50% conversion. The enantioselectivity could be decreased if required by medium engineering by the addition of cosolvents (e. g. dimethyl sulfoxide).
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Institute of Chemistry, NAWI Graz, BioTechMed GrazUniversity of GrazHeinrichstr. 288010GrazAustria
| | - Etta Jost
- Institute of Chemistry, NAWI Graz, BioTechMed GrazUniversity of GrazHeinrichstr. 288010GrazAustria
| | - Doris Loidolt
- Institute of Chemistry, NAWI Graz, BioTechMed GrazUniversity of GrazHeinrichstr. 288010GrazAustria
| | - Alexander Swoboda
- Institute of Chemistry, NAWI Graz, BioTechMed GrazUniversity of GrazHeinrichstr. 288010GrazAustria
| | - Mathias Pickl
- Institute of Chemistry, NAWI Graz, BioTechMed GrazUniversity of GrazHeinrichstr. 288010GrazAustria
| | - Wael Elaily
- Institute of BiochemistryGraz University of TechnologyPetersgasse 12/II8010GrazAustria
- Chemistry of Natural & Microbial Products DepartmentNational Research Centre33 El Buhouth St12622CairoEgypt
| | - Bastian Daniel
- Institute of BiochemistryGraz University of TechnologyPetersgasse 12/II8010GrazAustria
- Austrian Centre of Industrial Biotechnology, c/o Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyPetersgasse 12/II8010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, NAWI Graz, BioTechMed GrazUniversity of GrazHeinrichstr. 288010GrazAustria
| |
Collapse
|
21
|
Price CAH, Pastor-Pérez L, Ivanova S, Reina TR, Liu J. The Success Story of Gold-Based Catalysts for Gas- and Liquid-Phase Reactions: A Brief Perspective and Beyond. Front Chem 2019; 7:691. [PMID: 31709225 PMCID: PMC6822280 DOI: 10.3389/fchem.2019.00691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
Gold has long held the fascination of mankind. For millennia it has found use in art, cosmetic metallurgy and architecture; this element is seen as the ultimate statement of prosperity and beauty. This myriad of uses is made possible by the characteristic inertness of bulk gold; allowing it to appear long lasting and above the tarnishing experienced by other metals, in part providing its status as the most noble metal.
Collapse
Affiliation(s)
- Cameron A H Price
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Laura Pastor-Pérez
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Svetlana Ivanova
- Departamento de Química Inorgánica, Universidad de Sevilla, Instituto de Ciencias de Materiales de Sevilla Centro Mixto (US-CSIC), Seville, Spain
| | - Tomas R Reina
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom
| | - Jian Liu
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
22
|
Aerobic Methanol Oxidation over Unsupported Nanoporous Gold: The Influence of an Added Base. Catalysts 2019. [DOI: 10.3390/catal9050416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the aerobic oxidation of methanol over nanoporous gold catalysts under neutral and alkaline conditions. We find that under neutral conditions the catalyst has an activation period of about 10 h while upon addition of a base the catalyst becomes active right away. After this activation period, however, the activity of the catalyst is in both cases similar. Moreover, the selectivity was not affected by the base. We tested different bases and found the largest effect when adding OH−. The cation, however, does not play a role. We conclude that it is OH−, which is impacting the reaction and propose a mechanism for the suppression of the activation period. While the catalytic cycle, i.e., the reaction of methanol on the catalyst surface seems unaffected, the transient adsorption of OH− onto the surface can facilitate the activation of molecular oxygen by donating electrons to the surface. Due to the intermediate formation of oxidic Ag species, an effective segregation of surface-near Ag can be induced, which increases the abundance of Ag being essential for the activation of oxygen at the surface. In this way, a more efficient pathway for the generation of active oxygen is opened, allowing the reaction to set in faster.
Collapse
|
23
|
Friend CM, Xu F. Perspectives on the design of nanoparticle systems for catalysis. Faraday Discuss 2019; 208:595-607. [PMID: 30116826 DOI: 10.1039/c8fd00124c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of the Faraday Discussion, "Designing Nanoparticle Systems for Catalysis", is presented. Examples are taken from the papers presented at the meeting and from the literature to illustrate the main discussion points.
Collapse
Affiliation(s)
- Cynthia M Friend
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford St., Cambridge, MA 02138, USA.
| | | |
Collapse
|
24
|
Gopi E, Gravel E, Doris E. Direct aerobic oxidation of alcohols into esters catalyzed by carbon nanotube-gold nanohybrids. NANOSCALE ADVANCES 2019; 1:1181-1185. [PMID: 36133194 PMCID: PMC9473213 DOI: 10.1039/c8na00192h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/24/2018] [Indexed: 05/05/2023]
Abstract
Gold nanoparticles supported on carbon nanotubes were shown to efficiently catalyze the oxidation of alcohols to methyl esters under mild and selective reaction conditions. The reaction works with low catalyst loadings and the nanohybrid could be readily recycled and reused.
Collapse
Affiliation(s)
- Elumalai Gopi
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| |
Collapse
|
25
|
Zoloff Michoff ME, Ribas-Arino J, Marx D. Selective Nanomechanics of Aromatic versus Aliphatic Thiolates on Gold Surfaces. PHYSICAL REVIEW LETTERS 2019; 122:086801. [PMID: 30932588 DOI: 10.1103/physrevlett.122.086801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Thiolated gold nanointerfaces play a key role in numerous fields of science, technology, as well as modern medicine to coat, functionalize, and protect. Our computational study reveals that the mechanical vs thermal stabilities of aliphatic thiolates on gold surfaces are strikingly different from those of aromatic thiolates. The aliphatic thiolates feature, at the same time, a higher thermal desorption energy but a lower mechanical rupture force than thiophenolates. Our analysis discloses that this most counterintuitive property is due to different mechanochemical detachment mechanisms. Electronic structure analyses along the detachment pathways trace this back to the distinct electronic properties of the S─Au bond in stretched nanojunctions. The discoveries that it is a higher thermal stability that entails a lower mechanical stability and that mechanical loads generate different local nanostructures depending on the nature of the thiolate are highly relevant for the rational design of improved thiol-gold nanocontacts.
Collapse
Affiliation(s)
| | - Jordi Ribas-Arino
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
26
|
Niide T, Manabe N, Nakazawa H, Akagi K, Hattori T, Kumagai I, Umetsu M. Complementary Design for Pairing between Two Types of Nanoparticles Mediated by a Bispecific Antibody: Bottom-Up Formation of Porous Materials from Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3067-3076. [PMID: 30689940 DOI: 10.1021/acs.langmuir.8b03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in biotechnology have enabled the generation of antibodies with high affinity for the surfaces of specific inorganic materials. Herein, we report the synthesis of functional materials from multiple nanomaterials by using a small bispecific antibody recombinantly constructed from gold-binding and ZnO-binding antibody fragments. The bispecific antibody-mediated spontaneous linkage of gold and ZnO nanoparticles forms a binary gold-ZnO nanoparticle composite membrane. The relatively low melting point of the gold nanoparticles and the solubility of ZnO in dilute acidic solution then allowed for the bottom-up synthesis of a nanoporous gold membrane by means of a low-energy, low-environmental-load protocol. The nanoporous gold membrane showed high catalytic activity for the reduction of p-nitrophenol to p-aminophenol by sodium borohydride. Here, we show the potential utility of nanoparticle pairing mediated by bispecific antibodies for the bottom-up construction of nanostructured materials from multiple nanomaterials.
Collapse
Affiliation(s)
- Teppei Niide
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Noriyoshi Manabe
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Kazuto Akagi
- Advanced Institute for Materials Research , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai 980-8577 , Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| |
Collapse
|
27
|
Campisi S, Ferri M, Chan-Thaw CE, Sanchez Trujillo FJ, Motta D, Tabanelli T, Dimitratos N, Villa A. Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate. NANOMATERIALS 2019; 9:nano9020299. [PMID: 30791618 PMCID: PMC6410264 DOI: 10.3390/nano9020299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/29/2023]
Abstract
This paper studies the cooperative effect of Au nanoparticles deposited on vanadyl pyrophosphate oxide (VPO) in the liquid phase oxidation of benzyl alcohol. VPO was prepared using the classical method by thermally treating VOHPO4·0.5H2O precursor in reacting atmosphere at 420 °C for a period of 72 h. Au nanoparticles were deposited by incipient wetness method. The catalysts were characterized by means of XRD, TEM, XPS and Raman. The bulk VPO catalyst contains vanadyl pyrophosphate phase ((VO)2P2O7), and a small amount of VOPO4. The catalytic system exhibits a high activity in the base-free liquid phase oxidation of alcohols compared to Au on activated carbon, classic catalyst used for this type of reaction. Au/VPO showed a high peculiar selectivity to benzyl benzoate (76%), an important product used in the pharmaceutical and perfume industries. This behavior might be ascribed to the presence of strong acid sites of VPO, as determined by liquid phase titration. Stability tests performed on Au/VPO showed a deactivation of 10% after the first run, but a constant conversion along the following five cycles. This phenomenon can be attributed to the increase of mean Au particle size (from 19.1 to 23.4 nm) after recycling tests as well as the partial leaching of Au and V in the reaction media. Moreover, XRD evidenced a modification in the VPO structure with the partial formation of VOHPO4·0.5H2O phase.
Collapse
Affiliation(s)
- Sebastiano Campisi
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133 Milano, Italy.
| | - Michele Ferri
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133 Milano, Italy.
| | - Carine E Chan-Thaw
- Institut pour la Maîtrise de l'Énergie⁻Université d'Antananarivo BP 566, 101 Antananarivo, Madagascar.
| | - Felipe J Sanchez Trujillo
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Davide Motta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Tommaso Tabanelli
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Alberto Villa
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
28
|
Fecteau KM, Gould IR, Williams LB, Hartnett HE, Shaver GD, Johnson KN, Shock EL. Bulk gold catalyzes hydride transfer in the Cannizzaro and related reactions. NEW J CHEM 2019. [DOI: 10.1039/c9nj04029c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disproportionation reactions of benzaldehyde and benzyl alcohol are catalyzed by bulk gold with hot water as the only other reagent.
Collapse
Affiliation(s)
- Kristopher M. Fecteau
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
- School of Earth and Space Exploration
| | - Ian R. Gould
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Lynda B. Williams
- School of Earth and Space Exploration
- Arizona State University
- Tempe
- USA
| | - Hilairy E. Hartnett
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
- School of Earth and Space Exploration
| | | | | | - Everett L. Shock
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
- School of Earth and Space Exploration
| |
Collapse
|
29
|
Yin J, Zhang J, Cai C, Deng GJ, Gong H. Catalyst-Free Transamidation of Aromatic Amines with Formamide Derivatives and Tertiary Amides with Aliphatic Amines. Org Lett 2018; 21:387-392. [DOI: 10.1021/acs.orglett.8b03542] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jiawen Yin
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jingyu Zhang
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hang Gong
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
30
|
Wen J, Wu K, Yang D, Tian J, Huang Z, Filatov AS, Lei A, Lin XM. Low-Pressure Flow Chemistry of CuAAC Click Reaction Catalyzed by Nanoporous AuCu Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25930-25935. [PMID: 30032615 DOI: 10.1021/acsami.8b06927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Click chemistry has been widely used in bioconjugation, polymer synthesis, and the development of new anticancer drugs. Here, we report a nanoporous membrane made of AuCu alloy nanowires, which can effectively catalyze copper(I)-catalyzed 1,3-dipolar cycloaddition between azide and terminal alkyne (CuAAC) in flow condition with pressure less than one bar. Comparison studies of the nanowires before and after the reaction using X-ray photoelectron spectroscopy reveal Cu(0) and Cu(I) are main species that promote the reaction. This simple strategy can be used to synthesize a variety of compounds with triazole linkage and extended to gram level chemical production.
Collapse
Affiliation(s)
- Jiangwei Wen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| | - Kun Wu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Jun Tian
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| | - Zhiyuan Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Alexander S Filatov
- Department of Chemistry , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiao-Min Lin
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| |
Collapse
|
31
|
|
32
|
Tomaschun G, Dononelli W, Li Y, Bäumer M, Klüner T, Moskaleva LV. Methanol oxidation on the Au(3 1 0) surface: A theoretical study. J Catal 2018. [DOI: 10.1016/j.jcat.2018.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Kataoka K, Wachi K, Jin X, Suzuki K, Sasano Y, Iwabuchi Y, Hasegawa JY, Mizuno N, Yamaguchi K. CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides. Chem Sci 2018; 9:4756-4768. [PMID: 29910926 PMCID: PMC5982222 DOI: 10.1039/c8sc01410h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/05/2018] [Indexed: 01/25/2023] Open
Abstract
Although aerobic oxidative acylation of amides with alcohols would be a good complement to classical synthetic methods for imides (e.g., acylation of amides with activated forms of carboxylic acids), to date, there have been no reports on oxidative acylation to produce imides. In this study, we successfully developed, for the first time, an efficient method for the synthesis of imides through aerobic oxidative acylation of amides with alcohols by employing a CuCl/TMEDA/nor-AZADO catalyst system (TMEDA = teramethylethylendiamine; nor-AZADO = 9-azanoradamantane N-oxyl). The proposed acylation proceeds through the following sequential reactions: aerobic oxidation of alcohols to aldehydes, nucleophilic addition of amides to the aldehydes to form hemiamidal intermediates, and aerobic oxidation of the hemiamidal intermediates to give the corresponding imides. This catalytic system utilizes O2 as the terminal oxidant and produces water as the sole by-product. An important point for realizing this efficient acylation system is the utilization of a TMEDA ligand, which, to the best of our knowledge, has not been employed in previously reported Cu/ligand/N-oxyl systems. Based on experimental evidence, we consider that plausible roles of TMEDA involve the promotion of both hemiamidal oxidation and regeneration of an active CuII-OH species from a CuI species. Here promotion of hemiamidal oxidation is particularly important. Employing the proposed system, various types of structurally diverse imides could be synthesized from various combinations of alcohols and amides, and gram-scale acylation was also successful. In addition, the proposed system was further applicable to the synthesis of α-ketocarbonyl compounds (i.e., α-ketoimides, α-ketoamides, and α-ketoesters) from 1,2-diols and nucleophiles (i.e., amides, amines, and alcohols).
Collapse
Affiliation(s)
- Kengo Kataoka
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Keiju Wachi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Kosuke Suzuki
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Yusuke Sasano
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis , Hokkaido University , Kita 21 Nishi 10 , Kita-ku , Sapporo 001-0021 , Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Kazuya Yamaguchi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| |
Collapse
|
34
|
Liu L, Corma A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem Rev 2018; 118:4981-5079. [PMID: 29658707 PMCID: PMC6061779 DOI: 10.1021/acs.chemrev.7b00776] [Citation(s) in RCA: 2017] [Impact Index Per Article: 288.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 12/02/2022]
Abstract
Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.
Collapse
Affiliation(s)
- Lichen Liu
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo
Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, España
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo
Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, España
| |
Collapse
|
35
|
|
36
|
Zaghdoudi M, Moreaud L, Even-Hernandez P, Marchi V, Fourcade F, Amrane A, Maghraoui-Meherzi H, Geneste F. Immobilization of synthetic gold nanoparticles on a three-dimensional porous electrode. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
37
|
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02886] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David S. Mannel
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jesaiah King
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Yuliya Preger
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Maaz S. Ahmed
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Thatcher W. Root
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Montemore MM, van Spronsen MA, Madix RJ, Friend CM. O2 Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chem Rev 2017; 118:2816-2862. [DOI: 10.1021/acs.chemrev.7b00217] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew M. Montemore
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Matthijs A. van Spronsen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
39
|
Robertson DD, King ME, Personick ML. Concave Cubes as Experimental Models of Catalytic Active Sites for the Oxygen-Assisted Coupling of Alcohols by Dilute (Ag)Au Alloys. Top Catal 2017. [DOI: 10.1007/s11244-017-0874-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
|
41
|
Boukhvalov DW, Yoon TH. Development of Theoretical Descriptors for Cytotoxicity Evaluation of Metallic Nanoparticles. Chem Res Toxicol 2017. [PMID: 28651428 DOI: 10.1021/acs.chemrestox.7b00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Motivated by the recent development of quantitative structure-activity relationship (QSAR) methods in the area of nanotoxicology, we proposed an approach to develop additional descriptors based on results of first-principles calculations. For the evaluation of the biochemical activity of metallic nanoparticles, we consider two processes: ion extraction from the surface of a specimen to aqueous media and water dissociation on the surface. We performed calculations for a set of metals (Al, Fe, Cu, Ag, Au, and Pt). Taking into account the diversity of atomic structures of real metallic nanoparticles, we performed calculations for different models such as (001) and (111) surfaces, nanorods, and two different cubic nanoparticles of 0.6 and 0.3 nm size. Significant energy dependence of the processes from the selected model of nanoparticle suggests that for the correct description we should combine the calculations for several representative models. In addition to the descriptors of chemical activity of the metallic nanoparticles for the two studied processes, we propose descriptors for taking into account the dependence of chemical activity from the size and shape of nanoparticles. Routes to minimization of computational costs for these calculations are also discussed.
Collapse
Affiliation(s)
- D W Boukhvalov
- Department of Chemistry, Hanyang University , 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Korea
| | - T H Yoon
- Department of Chemistry, Hanyang University , 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
42
|
Liu J, Shan J, Lucci FR, Cao S, Sykes ECH, Flytzani-Stephanopoulos M. Palladium–gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00794a] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Silica supported and unsupported PdAu single atom alloys (SAAs) were investigated for the selective hydrogenation of 1-hexyne to hexenes under mild conditions.
Collapse
Affiliation(s)
- Jilei Liu
- Department of Chemical and Biological Engineering
- Tufts University
- Medford
- USA
| | - Junjun Shan
- Department of Chemical and Biological Engineering
- Tufts University
- Medford
- USA
| | | | - Sufeng Cao
- Department of Chemical and Biological Engineering
- Tufts University
- Medford
- USA
| | | | | |
Collapse
|
43
|
Chen BWJ, Genest A, Hühn A, Rösch N. Carboxylic acid formation by hydroxyl insertion into acyl moieties on late transition metals. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00972k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With a DFT approach, we systematically examined the barriers for OH insertion into acyl moieties on late transition metals, a reaction pertinent to the catalytic decarboxylation of biomass.
Collapse
Affiliation(s)
- Benjamin W. J. Chen
- Institute of High Performance Computing
- Agency for Science, Technology and Research
- Singapore 138632
- Singapore
| | - Alexander Genest
- Institute of High Performance Computing
- Agency for Science, Technology and Research
- Singapore 138632
- Singapore
| | - Adrian Hühn
- Institute of High Performance Computing
- Agency for Science, Technology and Research
- Singapore 138632
- Singapore
| | - Notker Rösch
- Institute of High Performance Computing
- Agency for Science, Technology and Research
- Singapore 138632
- Singapore
- Department Chemie and Catalysis Research Center
| |
Collapse
|