1
|
Peng J, Bai R, Lan Y. How to Achieve Hydrogenation/Hydrofunctionalization via Metal Hydride Complexes. Acc Chem Res 2025; 58:1484-1495. [PMID: 40254886 DOI: 10.1021/acs.accounts.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
ConspectusMetal hydride (M-H) complexes have garnered widespread attention in the synthesis of fine chemicals, materials, agrochemicals, and pharmaceuticals owing to the remarkable reactivity of the M-H bonds. Specifically, M-H complexes are active intermediates that catalyze hydrogen-transfer reactions, leading to efficient hydrogenation and hydrofunctionalization of C═C/C═X (X = O or N) bonds in unsaturated organic substrates for the formation of new carbon-hydrogen, carbon-carbon, and carbon-heteroatom bonds.Our research group has long studied M-H transformation mechanisms, with significant advancements over the past decade. For this Account, we have drawn on our extensive expertise to investigate the mechanisms governing numerous M-H transformation-driven reactions, including the hydrogenation of inert C═X bonds in unsaturated compounds, the hydrofunctionalization of C═C/C═X bonds, dehydrogenative coupling, and C-H functionalizations. On the basis of these mechanistic investigations, we developed a series of representative M-H transformation models, which offer robust theoretical guidance for modulating the reactivity and selectivity of M-H complexes in hydrogenation and hydrofunctionalization.Our Account begins with the structures and properties of M-H complexes, which lead to homolytic and heterolytic cleavage in reactions with different conditions, showcasing the remarkable versatility of metal hydride reactivity. Based on these principles, three transformation modes are discussed. First, hydride transfer of low-oxidation-state M-H complexes is chiefly engaged because the hydrogen atom attached to the metal has a high electron density and is strongly nucleophilic. In this case, a hydrogen atom serves as a hydride to transfer from the metal center to the electropositive center of the substrate through the following pathways: (a) insertion of an unsaturated bond into the M-H bond; (b) direct hydride transfer from the metal center to the electrophilic site of an unsaturated bond; (c) σ-bond metathesis; and (d) oxidative hydrogen migration. Reductive elimination might also occur when the oxidation state of the metal center increases and the metal center becomes electron-deficient. This usually regenerates the low-oxidation-state catalytic species while producing C/X'-H bonds. Notably, metal hydride hydrogen atom transfer (MHAT) is an advanced approach to radical-type hydrofunctionalizations. MHAT is usually induced by (a) a one-electron redox process enabled by a paramagnetic metal or (b) low M-H bond dissociation energy (BDE) values. Two possible types of MHAT (i.e., spontaneous and passive), which lead to different regioselectivities, are proposed. This article provides a detailed account of the strategies and mechanisms related to the reactivity and selectivity of M-H bond transformations, thus offering valuable guidance for the rational design of novel M-H complexes and reaction systems.
Collapse
Affiliation(s)
- Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Tsang LY, Kong LC, Sung HHY, Williams ID, Jia G. Oxidation-induced coupling reactions of bi(metallacycloprop-1-ene) complexes. Chem Commun (Camb) 2024; 60:10946-10949. [PMID: 39258461 DOI: 10.1039/d4cc04079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The feasibility of coupling of two carbene ligands of biscarbene complexes LnM(CR2)2 to form alkene complexes LnM(η2-R2CCR2) was predicted theoretically as early as 1982. However, until now, there appear still no reports on carbene coupling reactions of well-defined biscarbene complexes. This work reports oxidation-induced coupling reactions of bi(metallacycloprop-1-ene) complexes to give η4-butadiene complexes, a unique example of coupling of two carbene ligands of biscarbene complexes.
Collapse
Affiliation(s)
- Long Yiu Tsang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| | - Lam Cheung Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| | - Herman H Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
3
|
Tian L, Song X, Liu Y, Zhang C, Shi L, Chen Q, Deng Y, Cui W, Shan S, Hu T. Defect-engineering improves the activity of Metal-Organic frameworks for catalyzing hydroboration of Alkynes: A combination of experimental investigation and Density functional theory calculations. J Colloid Interface Sci 2024; 662:263-275. [PMID: 38354554 DOI: 10.1016/j.jcis.2024.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Defect-engineered metal-organic frameworks (DEMOFs) are emerging advanced materials. The construction of DEMOFs is of great significance; however, DEMOF-based catalysis remains unexplored. (E)-vinylboronates, an important building block for asymmetric synthesis, can be synthesized via the hydroboration of alkynes. However, the lack of high-performance catalysts considerably hinders their synthesis. Herein, a series of DEHKUST-1 (HKUST = Hong Kong University of Science and Technology) (Da-f) catalysts with missing occupation of linkers at Cu nodes were designed by partially replacing benzene-1,3,5-tricarboxylate (H3BTC) with defective connectors of pyridine-3,5-dicarboxylate (PYDC) to efficiently promote the hydroboration of alkynes. Results showed that the Dd containing 0.8 doping ratio of PYDC exhibited remarkable catalytic activity than the defect-free HKUST-1. This originated from the improved accessibility for reactants towards the Lewis acid active Cu sites of DEHKUST-1 due to the presence of plenty of rooms next to the Cu sites and enhanced coordination ability in such 'defective' HKUST-1. Dd had high selectivity (>99 %) and yield (>96 %) for (E)-vinylboronates and extensive functional group compatibility for terminal alkynes. Density functional theory (DFT) calculations were performed to elucidate the mechanism of hydroboration. Compared with that of defect-free HKUST-1, the low energy barrier of DEHKUST-1 can be attributed to the lower coordination number of Cu sites and enhanced accessibility of Cu active sites towards reagents.
Collapse
Affiliation(s)
- Long Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiaonan Song
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Churu Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lan Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qinglin Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yanyan Deng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Weigang Cui
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
4
|
Patil MD, Ghosh KK, RajanBabu TV. Cobalt-Catalyzed Enantioselective Hydroboration of α-Substituted Acrylates. J Am Chem Soc 2024; 146:6604-6617. [PMID: 38431968 PMCID: PMC11407689 DOI: 10.1021/jacs.3c12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Even though metal-catalyzed enantioselective hydroborations of alkenes have attracted enormous attention, few preparatively useful reactions of α-alkyl acrylic acid derivatives are known, and most use rhodium catalysts. No examples of asymmetric hydroboration of the corresponding α-arylacrylic acid esters are known. In our continuing efforts to search for new applications of earth-abundant cobalt catalysts for broadly applicable organic transformations, we have identified 2-(2-diarylphosphinophenyl)oxazoline ligands and mild reaction conditions for efficient and highly regio- and enantioselective hydroboration of α-alkyl- and α-aryl- acrylates, giving β-borylated propionates. Since the C-B bonds in these compounds can be readily replaced by C-O, C-N, and C-C bonds, these intermediates could serve as valuable chiral synthons, some from feedstock carbon sources, for the synthesis of propionate-bearing motifs including polyketides and related molecules. Two-step syntheses of "Roche" ester from methyl methacrylate (79%; er 99:1), arguably the most widely used chiral fragment in polyketide synthesis, and tropic acid esters (∼80% yield; er ∼93:7), which are potential intermediates for several medicinally important classes of compounds, illustrate the power of the new methods. Mechanistic studies confirm the requirement of a cationic Co(I) species [(L)Co]+as the viable catalyst in these reactions and rule out the possibility of a [L]Co-H-initiated route, which has been well-established in related hydroborations of other classes of alkenes. A mechanism involving an oxidative migration of a boryl group to the β-carbon of an η4-coordinated acrylate-cobalt complex is proposed as a plausible route.
Collapse
Affiliation(s)
- Manoj D Patil
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Kiron Kumar Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
5
|
Ibáñez-Ibáñez L, Mollar-Cuni A, Apaloo-Messan E, Sharma AK, Mata JA, Maseras F, Vicent C. Ion mobility mass spectrometry uncovers regioselectivity in the carboxylate-assisted C-H activation of palladium N-heterocyclic carbene complexes. Dalton Trans 2024; 53:656-665. [PMID: 38073605 DOI: 10.1039/d3dt02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Carboxylate-assisted Pd-catalyzed C-H bond activation constitutes a mild and versatile synthetic tool to efficiently and selectively cleave inert C-H bonds. Herein, we demonstrate a simple method to experimentally evaluate both reactivity and selectivity in such systems using mass spectrometry (MS) methods. The N-heterocyclic carbene (NHC) cations [(NHC)PdX]+, bearing as X- ligand bases commonly used to promote the C-H activation (carboxylates and bicarbonate), are generated in the gas-phase by ESI-MS. Their C-H bond activation at the N-bound groups of the NHC is then studied using Collision Induced Dissociation (CID) experiments. Ion Mobility Spectrometry (IM)-MS is exploited to identify a number of regioisomers associated with the distinctive site selective C-H activations. It is demonstrated that such C-H activation concomitant with acetic acid release occurs from a mixture of activated [(NHC-H)Pd(CH3CO2H)]+ and non-activated [(NHC)Pd(CH3CO2)]+ complexes. The identity of the X-type ligands (X = Cl-, carboxylates and bicarbonate) has a significant impact on the regioisomer branching ratio upon CID conditions. IM-MS in conjunction with a DFT mechanistic study is presented for the acetate-assisted C-H activation of the [(NHC)Pd(CH3CO2)]+ cation featuring butyl and aryl as N-donor groups.
Collapse
Affiliation(s)
- Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Andres Mollar-Cuni
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Edmond Apaloo-Messan
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Cristian Vicent
- Serveis Centrals d'Instrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
6
|
Parsutkar MM, Bhunia S, Majumder M, Lalisse RF, Hadad CM, RajanBabu TV. Ligand Control in Co-Catalyzed Regio- and Enantioselective Hydroboration: Homoallyl Secondary Boronates via Uncommon 4,3-Hydroboration of 1,3-Dienes. J Am Chem Soc 2023; 145:7462-7481. [PMID: 36972549 PMCID: PMC10563392 DOI: 10.1021/jacs.3c00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enantiopure homoallylic boronate esters are versatile intermediates because the C-B bond in these compounds can be stereospecifically transformed into C-C, C-O, and C-N bonds. Regio- and enantioselective synthesis of these precursors from 1,3-dienes has few precedents in the literature. We have identified reaction conditions and ligands for the synthesis of nearly enantiopure (er >97:3 to >99:1) homoallylic boronate esters via a rarely seen cobalt-catalyzed [4,3]-hydroboration of 1,3-dienes. Monosubstituted or 2,4-disubstituted linear dienes undergo highly efficient regio- and enantioselective hydroboration with HBPin catalyzed by [(L*)Co]+[BARF]-, where L* is typically a chiral bis-phosphine ligand with a narrow bite angle. Several such ligands (e.g., i-PrDuPhos, QuinoxP*, Duanphos, and BenzP*) that give high enantioselectivities for the [4,3]-hydroboration product have been identified. In addition, the equally challenging problem of regioselectivity is uniquely solved with a dibenzooxaphosphole ligand, (R,R)-MeO-BIBOP. A cationic cobalt(I) complex of this ligand is a very efficient (TON >960) catalyst while also providing excellent regioselectivities (rr >98:2) and enantioselectivities (er >98:2) for a broad range of substrates. A detailed computational investigation of the reactions using Co complexes from two widely different ligands (BenzP* and MeO-BIBOP) employing the B3LYP-D3 density functional theory provides key insights into the mechanism and the origins of selectivities. The computational results are in full agreement with the experiments. For the complexes we have examined thus far, the relative stabilities of the diastereomeric diene-bound complexes [(L*)Co(η4-diene)]+ lead to the initial diastereofacial selectivity, which in turn is retained in the subsequent steps, providing exceptional enantioselectivity for the reactions.
Collapse
Affiliation(s)
- Mahesh M Parsutkar
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Subhajit Bhunia
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Mayukh Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Fürstner A. How to Break the Law:
trans
‐Hydroboration and
gem
‐Hydroboration of Alkynes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
8
|
Mollar-Cuni A, Ibáñez-Ibáñez L, Guisado-Barrios G, Mata JA, Vicent C. Introducing Ion Mobility Mass Spectrometry to Identify Site-Selective C-H Bond Activation in N-Heterocyclic Carbene Metal Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2291-2300. [PMID: 36374280 DOI: 10.1021/jasms.2c00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The activation of C-H bonds in a selective manner still constitutes a major challenge from a synthetic point of view; thus, it remains an active area of fundamental and applied research. Herein, we introduce ion mobility spectrometry mass spectrometry-based (IM-MS) approaches to uncover site-selective C-H bond activation in a series of metal complexes of general formula [(NHC)LMCl]+ (NHC = N-heterocyclic carbene; L = pentamethylcyclopentadiene (Cp*) or p-cymene; M = Pd, Ru, and Ir). The C-H bond activation at the N-bound groups of the NHC ligand is promoted upon collision induced dissociation (CID). The identification of the resulting [(NHC-H)LM]+ isomers relies on the distinctive topology that such cyclometalated isomers adopt upon site-selective C-H bond activation. Such topological differences can be reliably evidenced as different mobility peaks in their respective CID-IM mass spectra. Alternative isomers are also identified via dehydrogenation at the Cp*/p-cymene (L) ligands to afford [(NHC)(L-H)M]+. The fragmentation of the ion mobility-resolved peaks is also investigated by CID-IM-CID. It enables the assignment of mobility peaks to the specific isomers formed from C(sp2)-H or C(sp3)-H bond activation and distinguishes them from the Cp*/p-cymene (L) dehydrogenation isomers. The conformational change of the NHC ligands upon C-H bond activation, concomitant with cyclometalation, is also discussed on the basis of the estimated collision cross section (CCS). A unique conformation change of the pyrene-tagged NHC members is identified that involves the reorientation of the NHC ring accompanied by a folding of the pyrene moiety.
Collapse
Affiliation(s)
- Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Gregorio Guisado-Barrios
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009Zaragoza, Spain
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Cristian Vicent
- Serveis Centrals d'Intrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071Castellón, Spain
| |
Collapse
|
9
|
Tan YX, Li S, Song L, Zhang X, Wu YD, Sun J. Ruthenium-Catalyzed Geminal Hydroborative Cyclization of Enynes. Angew Chem Int Ed Engl 2022; 61:e202204319. [PMID: 35596681 DOI: 10.1002/anie.202204319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Disclosed here is the first geminal (gem-) hydroborative cyclization of enynes. Different from known hydroborative cyclizations, this process adds hydrogen and boron to the same position, leading to a new reaction mode. With [Cp*RuCl]4 as catalyst, a range of gem-hydroborated bicyclic products bearing a cyclopropane unit could be rapidly assembled from simple enyne substrates. Control experiments and density functional theory (DFT) calculations provided important insights into the reaction mechanism. Notably, two major competing pathways may operate with substrate-dependence. 1,6-Enynes favor initial oxidative cyclometalation to form a ruthenacyclopentene intermediate prior to engaging hydroborane, while other enynes (e.g., 1,7-enynes) that lack strong propensity toward cyclization prefer initial alkyne gem-(H,B)-addition to form an α-boryl ruthenium carbene followed by intramolecular olefin cyclopropanation. This process also represents the first ruthenium-catalyzed enyne hydroborative cyclization.
Collapse
Affiliation(s)
- Yun-Xuan Tan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Feng Q, Li S, Li Z, Yan Q, Lin X, Song L, Zhang X, Wu YD, Sun J. Ru-Catalyzed Hydroboration of Ynones Leads to a Nontraditional Mode of Reactivity. J Am Chem Soc 2022; 144:14846-14855. [PMID: 35900878 DOI: 10.1021/jacs.2c06024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although hydroboration of simple ketones and alkynes have been well-established, little is known about the unique hydroboration reactivity for ynones, a family of important building blocks. Herein we report a new reaction mode of ynones leading to structurally novel and synthetically useful but previously inaccessible products, vinyl α-hydroxylboronates, under mild ruthenium-catalyzed hydroboration conditions. This reaction features high efficiency, a broad scope, and complete chemo-, regio-, and stereoselectivity, in spite of many possible competitive pathways. Both control experiments and detailed DFT studies suggested a two-step mechanism, involving initial rate-determining conjugate addition of hydroborane to form the key boryl allenolate intermediate followed by a fast second hydroboration of the enolate motif of the allenolate. Notably, direct 1,4-addition of hydroborane to carbonyl-conjugated alkynes also represents a new mode of reactivity. Despite the overwhelming complexity of this process, which involves selectivity control in almost every step, a thorough and detailed computation on a large set of possible transition states explained the unusual reactivity and intrinsic origin of selectivity.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhiyang Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiaolin Yan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xiangfeng Lin
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Road, Shenzhen 518057, China
| |
Collapse
|
11
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
12
|
Tan YX, Li S, Song L, Zhang X, Wu YD, Sun J. Ruthenium‐Catalyzed Geminal Hydroborative Cyclization of Enynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yun-Xuan Tan
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Shijia Li
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Lijuan Song
- Harbin Institute of Technology Shenzhen School of Science CHINA
| | - Xinhao Zhang
- Peking University Shenzhen Graduate School Lab of Computational Chemistry and Drug Design CHINA
| | - Yun-Dong Wu
- Peking University Shenzhen Graduate School Lab of Computational Chemistry and Drug Design CHINA
| | - Jianwei Sun
- Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay Hong Kong HONG KONG
| |
Collapse
|
13
|
Galiana‐Cameo M, Romeo R, Urriolabeitia A, Passarelli V, Pérez‐Torrente JJ, Polo V, Castarlenas R. Rhodium-NHC-Catalyzed gem-Specific O-Selective Hydropyridonation of Terminal Alkynes. Angew Chem Int Ed Engl 2022; 61:e202117006. [PMID: 35262264 PMCID: PMC9311084 DOI: 10.1002/anie.202117006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/08/2022]
Abstract
The dinuclear complex [Rh(μ-Cl)(η2 -coe)(IPr)]2 is an efficient catalyst for the O-selective Markovnikov-type addition of 2-pyridones to terminal alkynes. DFT calculations support a hydride-free pathway entailing intramolecular oxidative protonation of a π-alkyne by a κ1 N-hydroxypyridine ligand. Subsequent O-nucleophilic attack on a metallacyclopropene species affords an O-alkenyl-2-oxypyridine chelate rhodium intermediate as the catalyst resting state. The release of the alkenyl ether is calculated as the rate-determining step.
Collapse
Affiliation(s)
- María Galiana‐Cameo
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSICC/Pedro Cerbuna 12, CP50009ZaragozaSpain
| | - Raúl Romeo
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSICC/Pedro Cerbuna 12, CP50009ZaragozaSpain
| | - Asier Urriolabeitia
- Departamento de Química FísicaUniversidad de ZaragozaC/Pedro Cerbuna 12, CP50009ZaragozaSpain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSICC/Pedro Cerbuna 12, CP50009ZaragozaSpain
| | - Jesús J. Pérez‐Torrente
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSICC/Pedro Cerbuna 12, CP50009ZaragozaSpain
| | - Victor Polo
- Departamento de Química FísicaUniversidad de ZaragozaC/Pedro Cerbuna 12, CP50009ZaragozaSpain
| | - Ricardo Castarlenas
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSICC/Pedro Cerbuna 12, CP50009ZaragozaSpain
| |
Collapse
|
14
|
Lan J, Li X, Yang Y, Zhang X, Chung LW. New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms. Acc Chem Res 2022; 55:1109-1123. [PMID: 35385649 DOI: 10.1021/acs.accounts.1c00774] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Homogeneous catalysis and biocatalysis have been widely applied in synthetic, medicinal, and energy chemistry as well as synthetic biology. Driven by developments of new computational chemistry methods and better computer hardware, computational chemistry has become an essentially indispensable mechanistic "instrument" to help understand structures and decipher reaction mechanisms in catalysis. In addition, synergy between computational and experimental chemistry deepens our mechanistic understanding, which further promotes the rational design of new catalysts. In this Account, we summarize new or deeper mechanistic insights (including isotope, dispersion, and dynamical effects) into several complex homogeneous reactions from our systematic computational studies along with subsequent experimental studies by different groups. Apart from uncovering new mechanisms in some reactions, a few computational predictions (such as excited-state heavy-atom tunneling, steric-controlled enantioswitching, and a new geminal addition mechanism) based on our mechanistic insights were further verified by ensuing experiments.The Zimmerman group developed a photoinduced triplet di-π-methane rearrangement to form cyclopropane derivatives. Recently, our computational study predicted the first excited-state heavy-atom (carbon) quantum tunneling in one triplet di-π-methane rearrangement, in which the reaction rates and 12C/13C kinetic isotope effects (KIEs) can be enhanced by quantum tunneling at low temperatures. This unprecedented excited-state heavy-atom tunneling in a photoinduced reaction has recently been verified by an experimental 12C/13C KIE study by the Singleton group. Such combined computational and experimental studies should open up opportunities to discover more rare excited-state heavy-atom tunneling in other photoinduced reactions. In addition, we found unexpectedly large secondary KIE values in the five-coordinate Fe(III)-catalyzed hetero-Diels-Alder pathway, even with substantial C-C bond formation, due to the non-negligible equilibrium isotope effect (EIE) derived from altered metal coordination. Therefore, these KIE values cannot reliably reflect transition-state structures for the five-coordinate metal pathway. Furthermore, our density functional theory (DFT) quasi-classical molecular dynamics (MD) simulations demonstrated that the coordination mode and/or spin state of the iron metal as well as an electric field can affect the dynamics of this reaction (e.g., the dynamically stepwise process, the entrance/exit reaction channels).Moreover, we unveiled a new reaction mechanism to account for the uncommon Ru(II)-catalyzed geminal-addition semihydrogenation and hydroboration of silyl alkynes. Our proposed key gem-Ru(II)-carbene intermediates derived from double migrations on the same alkyne carbon were verified by crossover experiments. Additionally, our DFT MD simulations suggested that the first hydrogen migration transition-state structures may directly and quickly form the key gem-Ru-carbene structures, thereby "bypassing" the second migration step. Furthermore, our extensive study revealed the origin of the enantioselectivity of the Cu(I)-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with β-substituted alkenyl bicyclic heteroarenes enabled by dual coordination of both substrates. Such mechanistic insights promoted our computational predictions of the enantioselectivity reversal for the corresponding monocyclic heteroarene substrates and the regiospecific addition to the less reactive internal C═C bond of one diene substrate. These predictions were proven by our experimental collaborators. Finally, our mechanistic insights into a few other reactions are also presented. Overall, we hope that these interactive computational and experimental studies enrich our mechanistic understanding and aid in reaction development.
Collapse
Affiliation(s)
- Jialing Lan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiaoyong Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
15
|
Zhang L, Li Y, Wang L, Cao Z, Zhang Q, Li Y. Two β‐Diketiminate Zinc Complexes with 1‐D Chain and Dinuclear Topologies: Synthesis, Structures, and Catalytic Behavior. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Zhang
- Soochow University College of Chemistry, Chemical engineering and materials Science CHINA
| | - Yafei Li
- Soochow University College of Chemistry, Chemical engineering and materials Science CHINA
| | - Li Wang
- Soochow University College of Chemistry, Chemical engineering,and materials Science CHINA
| | - Zhu Cao
- Soochow University College of Chemistry, Chemical engineering,and materials Science CHINA
| | - Qian Zhang
- Soochow University College of Chemistry, Chemical engineering,and materials Science CHINA
| | - Yahong Li
- Soochow University Chemistry No 199 Renai Road 215123 Suzhou CHINA
| |
Collapse
|
16
|
Galiana‐Cameo M, Romeo R, Urriolabeitia A, Passarelli V, Pérez‐Torrente JJ, Polo V, Castarlenas R. Rhodium‐NHC‐Catalyzed
gem
‐Specific
O
‐Selective Hydropyridonation of Terminal Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- María Galiana‐Cameo
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12, CP 50009 Zaragoza Spain
| | - Raúl Romeo
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12, CP 50009 Zaragoza Spain
| | - Asier Urriolabeitia
- Departamento de Química Física Universidad de Zaragoza C/Pedro Cerbuna 12, CP 50009 Zaragoza Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12, CP 50009 Zaragoza Spain
| | - Jesús J. Pérez‐Torrente
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12, CP 50009 Zaragoza Spain
| | - Victor Polo
- Departamento de Química Física Universidad de Zaragoza C/Pedro Cerbuna 12, CP 50009 Zaragoza Spain
| | - Ricardo Castarlenas
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12, CP 50009 Zaragoza Spain
| |
Collapse
|
17
|
Wang CS, Yu Y, Sunada Y, Wang C, Yoshikai N. Cobalt-Catalyzed Carbo- and Hydrocyanation of Alkynes via C–CN Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chang-Sheng Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yongqi Yu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
19
|
Wang J, Zhou H, Wei J, Liu F, Wang T. Metal-free trans-hydroboration without a B-H bond: reactions of propargyl amines with Lewis acidic boranes. Chem Commun (Camb) 2022; 58:6910-6913. [DOI: 10.1039/d2cc02687b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first alkyne trans-hydroboration reaction without a B-H bond was described. This was achieved by reactions of propargyl amines with Lewis acidic boranes under mild conditions. The mechanism involved borane-mediated...
Collapse
|
20
|
Melot R, Saiegh TJ, Fürstner A. Regioselective trans-Hydrostannation of Boron-Capped Alkynes. Chemistry 2021; 27:17002-17011. [PMID: 34240757 PMCID: PMC9291331 DOI: 10.1002/chem.202101901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Alkynyl-B(aam) (aam=anthranilamidato) derivatives are readily available bench-stable compounds that undergo remarkably selective reactions with Bu3 SnH in the presence of [Cp*RuCl]4 as the catalyst. The addition follows a stereochemically unorthodox trans-selective course; in terms of regioselectivity, the Bu3 Sn- unit is delivered with high fidelity to the C-atom of the triple bond adjacent to the boracyclic head group ("alpha,trans-addition"). This outcome is deemed to reflect a hydrogen bonding interaction between the protic -NH groups of the benzo-1,3,2-diazaborininone ring system and the polarized [Ru-Cl] bond in the loaded catalyst, which locks the substrate in place in a favorable orientation relative to the incoming reagent. The resulting isomerically (almost) pure gem-dimetalated building blocks are amenable to numerous downstream functionalizations; most remarkable is the ability to subject the -B(aam) moiety to Suzuki-Miyaura cross coupling without need for prior hydrolysis while keeping the adjacent Bu3 Sn- group intact. Alternatively, the tin residue can be engaged in selective tin/halogen exchange without touching the boron substituent; the fact that the two -NH entities of -B(aam) do not protonate organozinc reagents and hence do not interfere with Negishi reactions of the alkenyl halides thus formed is another virtue of this so far underutilized boracycle. Overall, the ruthenium catalyzed trans-hydrostannation of alkynyl-B(aam) derivatives opens a practical gateway to isomerically pure trisubstituted alkenes of many different substitution patterns by sequential functionalization of the 1-alkenyl-1,1-heterobimetallic adducts primarily formed.
Collapse
Affiliation(s)
- Romain Melot
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Tomas J. Saiegh
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| |
Collapse
|
21
|
Rej S, Das A, Panda TK. Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100950] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Supriya Rej
- Institut für Chemie Technische Universität Berlin Berlin, Strasse des 17. Juni 115 10623 Berlin Germany
| | - Amrita Das
- Department of Applied Chemistry Faculty of Engineering Osaka University 565-0871 Suita Osaka Japan
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy Telangana India
| |
Collapse
|
22
|
Auth T, Grabarics M, Schlangen M, Pagel K, Koszinowski K. Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts. Anal Chem 2021; 93:9797-9807. [PMID: 34227799 DOI: 10.1021/acs.analchem.1c01333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn-1(BR4)n]- (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1-6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81-585, DTCCSN2 = 130-704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin-1MnPh2n]- and [MnPhn+1]- (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers.
Collapse
Affiliation(s)
- Thomas Auth
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Márkó Grabarics
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, Berlin 10623, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
23
|
Gupta S, Su S, Zhang Y, Liu P, Wink DJ, Lee D. Ruthenabenzene: A Robust Precatalyst. J Am Chem Soc 2021; 143:7490-7500. [PMID: 33961744 DOI: 10.1021/jacs.1c02237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metallaaromatics constitute a unique class of aromatic compounds where one or more transition metal elements are incorporated into the aromatic system, the parent of which is metallabenzene. One of the main concerns about metallabenzenes generally deals with the structural characterization related to their relative aromaticity compared to the carbon archetype. Transition metal-containing metallabenzenes are also implicated in certain catalytic processes such as alkyne metathesis polymerization; however, these transition metal-based metallaaromatic compounds have not been developed as a catalyst. Herein, we describe an effective strategy to generate diverse arrays of ruthenabenzenes and demonstrated them as an aromatic equivalent of the Grubbs-type ruthenium alkylidene catalysts. These ruthenabenzenes can be prepared via an enyne metathesis and metallotropic [1,3]-shift cascade process to form alkyne-chelated ruthenium alkylidene intermediates followed by spontaneous cycloaromatization. The aromatic nature of these complexes was confirmed by spectroscopic and X-ray crystallographic data, and the mechanistic pathways for the cycloaromatization process were studied by DFT calculations. These ruthenabenzenes display robust catalytic activity for metathesis and other transformations, which illustrates that metallabenzenes are not only compounds of structural and theoretical interests but also are a novel platform for new catalyst development.
Collapse
Affiliation(s)
- Saswata Gupta
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Siyuan Su
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
24
|
Murakami S, Matsubara R, Hayashi M. Synthesis, structure, and catalytic activity of [Cp*Ru(η1-ArCN)3]PF6 complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Feng Q, Wu H, Li X, Song L, Chung LW, Wu YD, Sun J. Ru-Catalyzed Geminal Hydroboration of Silyl Alkynes via a New gem-Addition Mechanism. J Am Chem Soc 2020; 142:13867-13877. [DOI: 10.1021/jacs.0c05334] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Haonan Wu
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijuan Song
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- College of Chemistry, Peking University, Beijing 100871, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
26
|
Liu Y, Jiang Z, Chen J. Origin of the ligand effect in the cobalt catalyzed regioselective hydroboration of 1,3-diene. Org Biomol Chem 2020; 18:3747-3753. [PMID: 32367108 DOI: 10.1039/d0ob00628a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydroboration of 1,3-dienes can provide useful intermediates with multiple functionalities. However, achieving high regioselectivity is still a challenge. Recent experimental research studies indicate that this challenge could be overcome by the ligand effect. We made DFT calculations to elucidate the origin of ligand controlled regioselectivity in cobalt catalyzed hydroboration of 2-substituted 1,3-diene. The following conclusions have been reached: when using PHOX ((2-oxazolinyl)-phenyldiphenylphosphine) as the ligand, the favorable 1,4-selective oxidative hydrogen migration pathway was suggested to start with the rate-determining step of 1,4-selective oxidative hydrogen migration followed by reductive boryl migration. The unique 1,4-selectivity is proposed to be a result of the less steric hindrance between the substrate and the ligand PHOX. When dppp (1,3-bis-(diphenylphosphino)propane) is used as the ligand, the favorable pathway is proposed to be a 1,2-selective oxidative boryl migration pathway which involves 1,2-selective oxidative boryl migration and reductive hydrogen migration. Interestingly, another smaller-bite angle bisphosphine ligand dppe (1,2-bis(diphenylphosphino)ethane) favors the 1,4-selective oxidative boryl migration pathway. DFT calculations revealed that the preferred oxidative boryl migration pathway with both dppp and dppe is attributed to their electron-rich properties which accelerate the oxidative boryl migration step. The larger bite angle of dppp than that of dppe leads to bulkier steric hindrance and promotes 1,2-selective reductive hydrogen migration. On the other hand, for dppe with a smaller bite angle, the steric effect in the reductive hydrogen migration step is not dominant and 1,4-selective reductive hydrogen migration is favored. It is expected that the analysis of the ligand effect on the regioselectivity would enable further catalyst design.
Collapse
Affiliation(s)
- Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - ZhongJie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Jipei Chen
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Shao H, Wang Y, Bielawski CW, Liu P. Computational Investigations of the Effects of N-Heterocyclic Carbene Ligands on the Mechanism, Reactivity, and Regioselectivity of Rh-Catalyzed Hydroborations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Huiling Shao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuening Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
28
|
Wang K, Liu Y, Wu Q, Liu L, Li Y, James TD, Chen G, Bi S. Mechanistic insights into the origin of substituent-directed product Z–E selectivity for gold-catalyzed [4+1]-annulations of 1,4-diyn-3-ols with isoxazoles: A DFT study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Fu Z, Guo X, Li Y, Li J. Computational study of catalyst-controlled regiodivergent pathways in hydroboration of 1,3-dienes: mechanism and origin of regioselectivity. Org Chem Front 2020. [DOI: 10.1039/d0qo00479k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DFT calculations were performed to elucidate the origins of catalyst-controlled regioselectivity in the hydroboration of 2-substituted 1,3-dienes.
Collapse
Affiliation(s)
- Zhongxin Fu
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| | - Xianming Guo
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| | - Yupan Li
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| | - Juan Li
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| |
Collapse
|
30
|
Omidirad R, Azizi K. DFT study of charge-controlled mechanism of water molecule dissociation on vacancy defected boron nitride nanosheets. J Mol Graph Model 2019; 93:107448. [DOI: 10.1016/j.jmgm.2019.107448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022]
|
31
|
Song L, Feng Q, Wang Y, Ding S, Wu YD, Zhang X, Chung LW, Sun J. Ru-Catalyzed Migratory Geminal Semihydrogenation of Internal Alkynes to Terminal Olefins. J Am Chem Soc 2019; 141:17441-17451. [DOI: 10.1021/jacs.9b09658] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijuan Song
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Qiang Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shengtao Ding
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- College of Chemistry, Peking University, Beijing 100871, China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Lung Wa Chung
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
32
|
Das T, Ghule S, Vanka K. Insights Into the Origin of Life: Did It Begin from HCN and H 2O? ACS CENTRAL SCIENCE 2019; 5:1532-1540. [PMID: 31572780 PMCID: PMC6764159 DOI: 10.1021/acscentsci.9b00520] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 05/14/2023]
Abstract
The seminal Urey-Miller experiments showed that molecules crucial to life such as HCN could have formed in the reducing atmosphere of the Hadean Earth and then dissolved in the oceans. Subsequent proponents of the "RNA World" hypothesis have shown aqueous HCN to be the starting point for the formation of the precursors of RNA and proteins. However, the conditions of early Earth suggest that aqueous HCN would have had to react under a significant number of constraints. Therefore, given the limiting conditions, could RNA and protein precursors still have formed from aqueous HCN? If so, what mechanistic routes would have been followed? The current computational study, with the aid of the ab initio nanoreactor (AINR), a powerful new tool in computational chemistry, addresses these crucial questions. Gratifyingly, not only do the results from the AINR approach show that aqueous HCN could indeed have been the source of RNA and protein precursors, but they also indicate that just the interaction of HCN with water would have sufficed to begin a series of reactions leading to the precursors. The current work therefore provides important missing links in the story of prebiotic chemistry and charts the road from aqueous HCN to the precursors of RNA and proteins.
Collapse
Affiliation(s)
- Tamal Das
- Physical and Materials Chemistry Division,
CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha
Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative
Research (AcSIR), Ghaziabad 201002, India
| | - Siddharth Ghule
- Physical and Materials Chemistry Division,
CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha
Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative
Research (AcSIR), Ghaziabad 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division,
CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha
Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative
Research (AcSIR), Ghaziabad 201002, India
- E-mail:
| |
Collapse
|
33
|
Yamamoto K, Mohara Y, Mutoh Y, Saito S. Ruthenium-Catalyzed (Z)-Selective Hydroboration of Terminal Alkynes with Naphthalene-1,8-diaminatoborane. J Am Chem Soc 2019; 141:17042-17047. [DOI: 10.1021/jacs.9b06910] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kensuke Yamamoto
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Mohara
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
34
|
Xie X, Zhang X, Gao W, Meng C, Wang X, Ding S. Iridium-catalyzed Markovnikov hydrosilylation of terminal alkynes achieved by using a trimethylsilyl-protected trihydroxysilane. Commun Chem 2019. [DOI: 10.1038/s42004-019-0206-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
35
|
Grams RJ, Fritzemeier RG, Slebodnick C, Santos WL. trans-Hydroboration of Propiolamides: Access to Primary and Secondary (E)-β-Borylacrylamides. Org Lett 2019; 21:6795-6799. [PMID: 31393740 DOI: 10.1021/acs.orglett.9b02408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Justin Grams
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Russell G. Fritzemeier
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
36
|
Longobardi LE, Fürstner A. trans
‐Hydroboration of Propargyl Alcohol Derivatives and Related Substrates. Chemistry 2019; 25:10063-10068. [DOI: 10.1002/chem.201902228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/07/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Lauren E. Longobardi
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr Germany
| |
Collapse
|
37
|
Talavera M, von Hahmann CN, Müller R, Ahrens M, Kaupp M, Braun T. C−H and C−F Bond Activation Reactions of Fluorinated Propenes at Rhodium: Distinctive Reactivity of the Refrigerant HFO‐1234yf. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maria Talavera
- Department of ChemistryHumboldt Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Cortney N. von Hahmann
- Department of ChemistryHumboldt Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Robert Müller
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Technische Universität Berlin Strasse des 17. Juni 135 10623 Berlin Germany
| | - Mike Ahrens
- Department of ChemistryHumboldt Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Technische Universität Berlin Strasse des 17. Juni 135 10623 Berlin Germany
| | - Thomas Braun
- Department of ChemistryHumboldt Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
38
|
Talavera M, von Hahmann CN, Müller R, Ahrens M, Kaupp M, Braun T. C-H and C-F Bond Activation Reactions of Fluorinated Propenes at Rhodium: Distinctive Reactivity of the Refrigerant HFO-1234yf. Angew Chem Int Ed Engl 2019; 58:10688-10692. [PMID: 31102565 DOI: 10.1002/anie.201902872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/28/2019] [Indexed: 02/02/2023]
Abstract
The reaction of [Rh(H)(PEt3 )3 ] (1) with the refrigerant HFO-1234yf (2,3,3,3-tetrafluoropropene) affords an efficient route to obtain [Rh(F)(PEt3 )3 ] (3) by C-F bond activation. Catalytic hydrodefluorinations were achieved in the presence of the silane HSiPh3 . In the presence of a fluorosilane, 3 provides a C-H bond activation followed by a 1,2-fluorine shift to produce [Rh{(E)-C(CF3 )=CHF}(PEt3 )3 ] (4). Similar rearrangements of HFO-1234yf were observed at [Rh(E)(PEt3 )3 ] [E=Bpin (6), C7 D7 (8), Me (9)]. The ability to favor C-H bond activation using 3 and fluorosilane is also demonstrated with 3,3,3-trifluoropropene. Studies are supported by DFT calculations.
Collapse
Affiliation(s)
- Maria Talavera
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Cortney N von Hahmann
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Mike Ahrens
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
39
|
Jin D, Ma X, Liu Y, Peng J, Yang Z. Novel aluminium compounds derived from Schiff bases: Synthesis, characterization and catalytic performance in hydroboration. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Da Jin
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Yashuai Liu
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Jiong Peng
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
40
|
Zhang QC, Li X, Wang X, Li SJ, Qu LB, Lan Y, Wei D. Insights into highly selective ring expansion of oxaziridines under Lewis base catalysis: a DFT study. Org Chem Front 2019. [DOI: 10.1039/c8qo01370e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The possible mechanism and stereoselectivity of the NHC-catalyzed ring expansion reaction of oxaziridines have been theoretically studied for the first time.
Collapse
Affiliation(s)
- Qiao-Chu Zhang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xue Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xinghua Wang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Shi-Jun Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Ling-Bo Qu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yu Lan
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
- School of Chemistry and Chemical Engineering
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
41
|
Cheng GJ, Zhong XM, Wu YD, Zhang X. Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chem Commun (Camb) 2019; 55:12749-12764. [PMID: 31560354 DOI: 10.1039/c9cc05458h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of mass spectrometry and computational chemistry has been proven to be powerful for exploring reaction mechanisms. The former provides information of reaction intermediates, while the latter gives detailed reaction energy profiles.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xiu-Mei Zhong
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|
42
|
The role of Si in Ir(SiNN) catalyst and chemoselectivity of dehydrogenative borylation over hydroborylation: A theoretical study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Zhang X, Ji X, Xie X, Ding S. Construction of highly sterically hindered 1,1-disilylated terminal alkenes. Chem Commun (Camb) 2018; 54:12958-12961. [PMID: 30379149 DOI: 10.1039/c8cc07765g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
One direct and efficient procedure for the synthesis of 1,1-disilylated terminal alkenes is demonstrated in this paper. To overcome and rationally utilize the steric hindrance of silyl units, the cationic ruthenium catalyst [CpRu(MeCN)3]+ was found to be effective for Markovnikov hydrosilylation of 1-silyl terminal alkynes with high yields and excellent regioselectivity. Dissimilarities between alkyl and alkoxy silyl units lead to versatile product derivatizations toward a variety of useful building blocks.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | |
Collapse
|
44
|
Fürstner A. trans-Hydrogenation, gem-Hydrogenation, and trans-Hydrometalation of Alkynes: An Interim Report on an Unorthodox Reactivity Paradigm. J Am Chem Soc 2018; 141:11-24. [DOI: 10.1021/jacs.8b09782] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
45
|
Fritzemeier R, Gates A, Guo X, Lin Z, Santos WL. Transition Metal-Free Trans Hydroboration of Alkynoic Acid Derivatives: Experimental and Theoretical Studies. J Org Chem 2018; 83:10436-10444. [DOI: 10.1021/acs.joc.8b01493] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Russell Fritzemeier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ashley Gates
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong SAR, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong SAR, China
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
46
|
Li X, Tang M, Wang Y, Wang Y, Li Z, Qu LB, Wei D. Insights into the N-Heterocyclic Carbene (NHC)-Catalyzed Intramolecular Cyclization of Aldimines: General Mechanism and Role of Catalyst. Chem Asian J 2018; 13:1710-1718. [PMID: 29667337 DOI: 10.1002/asia.201800313] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Indexed: 12/14/2022]
Abstract
One of the most challenging questions in the Lewis base organocatalyst field is how to predict the most electrophilic carbon for the complexation of N-heterocyclic carbene (NHC) and reactant. This study provides a valuable case for this issue. Multiple mechanisms (A, B, C, D, and E) for the intramolecular cyclization of aldimine catalyzed by NHC were investigated by using density functional theory (DFT). The computed results reveal that the NHC energetically prefers attacking the iminyl carbon (AIC mode, which is associated with mechanisms A and C) rather than attacking the olefin carbon (AOC mode, which is associated with mechanisms B and D) or attacking the carbonyl carbon (ACC mode, which is associated with mechanism E) of aldimine. The calculated results based on the different reaction models indicate that mechanism A (AIC mode), which is associated with the formation of the aza-Breslow intermediate, is the most favorable pathway. For mechanism A, there are five steps: (1) nucleophilic addition of NHC to the iminyl carbon of aldimine; (2) [1,2]-proton transfer to form an aza-Breslow intermediate; (3) intramolecular cyclization; (4) the other [1,2]-proton transfer; and (5) regeneration of NHC. The analyses of reactivity indexes have been applied to explain the chemoselectivity, and the general principles regarding the possible mechanisms would be useful for the rational design of NHC-catalyzed chemoselective reactions.
Collapse
Affiliation(s)
- Xue Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Kexue Street, Zhengzhou, Henan, 450001, P. R. China
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Kexue Street, Zhengzhou, Henan, 450001, P. R. China
| | - Yanyan Wang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Kexue Street, Zhengzhou, Henan, 450001, P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 100 Kexue Street, Zhengzhou, Henan, 450002, P. R. China
| | - Zhongjun Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Kexue Street, Zhengzhou, Henan, 450001, P. R. China
| | - Ling-Bo Qu
- The College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Kexue Street, Zhengzhou, Henan, 450001, P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Kexue Street, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
47
|
Huang Y, del Pozo J, Torker S, Hoveyda AH. Enantioselective Synthesis of Trisubstituted Allenyl-B(pin) Compounds by Phosphine-Cu-Catalyzed 1,3-Enyne Hydroboration. Insights Regarding Stereochemical Integrity of Cu-Allenyl Intermediates. J Am Chem Soc 2018; 140:2643-2655. [PMID: 29417810 PMCID: PMC6019291 DOI: 10.1021/jacs.7b13296] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Catalytic enantioselective boron-hydride additions to 1,3-enynes, which afford allenyl-B(pin) (pin = pinacolato) products, are disclosed. Transformations are promoted by a readily accessible bis-phosphine-Cu complex and involve commercially available HB(pin). The method is applicable to aryl- and alkyl-substituted 1,3-enynes. Trisubstituted allenyl-B(pin) products were generated in 52-80% yield and, in most cases, in >98:2 allenyl:propargyl and 92:8-99:1 enantiomeric ratio. Utility is highlighted through a highly diastereoselective addition to an aldehyde, and a stereospecific catalytic cross-coupling process that delivers an enantiomerically enriched allene with three carbon-based substituents. The following key mechanistic attributes are elucidated: (1) Spectroscopic and computational investigations indicate that low enantioselectivity can arise from loss of kinetic stereoselectivity, which, as suggested by experimental evidence, may occur by formation of a propargylic anion generated by heterolytic Cu-C cleavage. This is particularly a problem when trapping of the Cu-allenyl intermediate is slow, namely, when an electron deficient 1,3-enyne or a less reactive boron-hydride reagent (e.g., HB(dan) (dan = naphthalene-1,8-diaminato)) is used or under non-optimal conditions (e.g., lower boron-hydride concentration causing slower trapping). (2) With enynes that contain a sterically demanding o-aryl substituent considerable amounts of the propargyl-B(pin) isomer may be generated (25-96%) because a less sterically demanding transition state for Cu/B exchange becomes favorable. (3) The phosphine ligand can promote isomerization of the enantiomerically enriched allenyl-B(pin) product; accordingly, lower ligand loading might at times be optimal. (4) Catalytic cross-coupling with an enantiomerically enriched allenyl-B(pin) compound might proceed with high stereospecificity (e.g., phosphine-Pd-catalyzed cross-coupling) or lead to considerable racemization (e.g., phosphine-Cu-catalyzed allylic substitution).
Collapse
Affiliation(s)
- Youming Huang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| | - Juan del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| |
Collapse
|
48
|
Liu L, Pei G, Liu P, Ling B, Liu Y, Bi S. Mechanistic Unveiling of C═C Double-Bond Rotation and Origins of Regioselectivity and Product E/Z Selectivity of Pd-Catalyzed Olefinic C-H Functionalization of (E)-N-Methoxy Cinnamamide. J Org Chem 2018; 83:2067-2076. [PMID: 29376365 DOI: 10.1021/acs.joc.7b03007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory (DFT) calculations have been performed to study the Pd-catalyzed C-H functionalization of (E)-N-methoxy cinnamamide (E1), which selectively provides the α-C-H activation products (EP as minor product and its C═C rotation isomer ZP' as major product). Three crucial issues are solved: (i) The detailed mechanism leading to ZP' is one issue. The computational analyses of the mechanisms proposed in previously experimental and theoretical literature do not seem to be consistent with the experimental findings due to the high barriers involved. Alternatively, we present a novel oxidation/reduction-promoted mechanism featuring the Pd(0) → Pd(II) → Pd(0) transformation. The newly proposed mechanism involves the initial coordination of the active catalyst PdL2 (L = t-BuCN) with the C═C bond in EP, followed by the oxidative cyclization/reductive decyclization-assisted C═C double-bond rotation processes resulting in ZP' and regeneration of PdL2. (ii) The origin of the product E/Z selectivity is the second issue. On the basis of the calculated results, it is found that, at the initial stage of the reaction, EP is certainly completely generated, while no ZP' formation occurred. Once E1 is used up, EP immediately acts as the partner of the new catalytic cycle and sluggishly evolves into ZP'. A small amount of generated ZP' would reversibly transform to EP due to the higher barrier involved. (iii) The intrinsic reasons for the regioselectivity are the third issue. The calculated results indicate that the regioselectivity for α-C-H activation is mainly attributed to the stronger electrostatic attraction between the α-C and the metal center.
Collapse
Affiliation(s)
- Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, P.R. China
| | - Guojing Pei
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, P.R. China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, P.R. China
| | - Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, P.R. China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, P.R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, P.R. China
| |
Collapse
|
49
|
Yang Y, Jiang J, Yu H, Shi J. Mechanism and Origin of the Stereoselectivity in the Palladium-Catalyzed trans Hydroboration of Internal 1,3-Enynes with an Azaborine-Based Phosphine Ligand. Chemistry 2018; 24:178-186. [PMID: 29068105 DOI: 10.1002/chem.201704035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 02/02/2023]
Abstract
An azaborine-based phosphine-Pd catalyst was introduced by the Liu group to promote trans hydroboration of the C≡C triple bond of internal 1,3-enyne substrates. Despite the excellent yield and selectivity observed experimentally, the mechanism and the origin of this special trans selectivity remained unknown. Herein, a comprehensive theoretical investigation was performed to clarify these issues. Accordingly, two main mechanisms (inner- and outer-sphere) were proposed and examined. Different from the conventional inner-sphere mechanism, in which the transition metal is involved in H-B bond cleavage, this reaction follows an outer-sphere mechanism, in which Pd does not directly participate in H-B bond cleavage. More specifically, the favorable pathway followed a Tsuji-Trost type reaction, in which the H-B bond was weakened by the formation of a four-coordinate boron intermediate (i.e., the boron is attached to the terminal carbon of the alkyne group). It then underwent a hydride-transfer process with the assistance of a second borane molecule, and finally reductive elimination generated the trans hydroboration product. Further analysis ascribed the origin of the special trans selectivity to the unique steric effect and electronic effect introduced by the special κ1 -P-η2 -BC coordination pattern.
Collapse
Affiliation(s)
- Yinuo Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, P.R. China
| | - Julong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, P.R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, Anhui, P.R. China
| | - Jing Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, P.R. China
| |
Collapse
|
50
|
Zi Y, Schömberg F, Seifert F, Görls H, Vilotijevic I. trans-Hydroborationvs.1,2-reduction: divergent reactivity of ynones and ynoates in Lewis-base-catalyzed reactions with pinacolborane. Org Biomol Chem 2018; 16:6341-6349. [DOI: 10.1039/c8ob01343h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the presence of phosphine catalyst and pinacolborane, ynones undergo 1,2-reduction while ynoates undergotrans-hydroboration. Mechanistic insights into the two competing pathways lay grounds for control of selectivity in these processes.
Collapse
Affiliation(s)
- You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Fabian Seifert
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| |
Collapse
|