1
|
Pradhan C, Khandelwal D, Punji B. Regioselective Difluoroalkylation of 2-Pyridones with Fluoroalkyl Bromides Enabled by a Nickel(II) Catalyst. Chem Asian J 2025:e202401870. [PMID: 39786319 DOI: 10.1002/asia.202401870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Regioselective C-H difluoroalkylation of diverse 2-pyridones with ethyl bromodifluoroacetates and bromodifluoroacetamides is accomplished by using a (dppf)NiCl2 catalyst under mild conditions. This efficient protocol could deliver a variety of C-3 difluoroalkylated pyridones with the tolerance of a range of highly susceptible functionalities, such as -Cl, -Br, -I, -COMe, -CN, -NMe2 and -NO2, including heteroarenes like pyridinyl, furanyl, thiophenyl and carbazolyl moieties. A preliminary mechanistic study suggests the radical pathway for the reaction involving fluoroalkyl radical intermediate.
Collapse
Affiliation(s)
- Chandini Pradhan
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Disha Khandelwal
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- K J Somaiya College of Science and Commerce, Vidya Vihar, Mumbai, 400 077, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
2
|
Vijaykumar M, Pradhan C, Gonnade RG, Punji B. Chelation-assisted and steric-controlled selectivity in the Pd-catalyzed C-H/C-H oxidative coupling of indoles. Chem Commun (Camb) 2024; 60:13028-13031. [PMID: 39431434 DOI: 10.1039/d4cc03835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
We report the first regioselective C2-C7 oxidative coupling of indoles using a palladium catalyst upon the strategic installation of N-pyridinyl and C3-carbonyl, which delivers 2,7-biindoles with a broad scope (25 examples; up to 93% yield). Isolation of the catalytic intermediate reveals the initial activation of the C(7)-H bond, followed by the C(2)-H bond in indoles, and the reaction proceeds via a Pd(II)/Pd(0) pathway.
Collapse
Affiliation(s)
- Muniyappa Vijaykumar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Chandini Pradhan
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- Centre for Material Characterization, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411 008, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
3
|
Nolan EL, Blythe IM, Qu F, Kampf JW, Sanford MS. Speciation and Reactivity of Mono- and Binuclear Ni Intermediates in Aminoquinoline-Directed C-H Arylation and Benzylation. J Am Chem Soc 2024; 146:18128-18135. [PMID: 38899519 DOI: 10.1021/jacs.4c05123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This paper describes detailed organometallic studies of the aminoquinoline-directed Ni-catalyzed C-H functionalization of 2,3,4,5-tetrafluoro-N-(quinolin-8-yl)benzamide with diaryliodonium reagents. A combination of 19F NMR spectroscopy and X-ray crystallography is used to track and characterize diamagnetic and paramagnetic intermediates throughout this transformation. These provide key insights into both the cyclometalation and oxidative functionalization steps of the catalytic cycle. The reaction conditions (solvent, ligands, base, and stoichiometry) play a central role in the observation of a NiII precyclometalation intermediate as well as in the speciation of the NiII products of C-H activation. Both mono- and binuclear cyclometalated NiII species are observed and interconvert, depending on the reaction conditions. Cyclic voltammetry reveals that the NiII/III redox potentials for the cyclometalated intermediates vary by more than 700 mV depending on their coordination environments, and these differences are reflected in their relative reactivity with diaryliodonium oxidants. The oxidative functionalization reaction affords a mixture of arylated and solvent functionalization organic products, depending on the conditions and solvent. For example, conducting oxidation in toluene leads to the preferential formation of the benzylated product. A series of experiments implicate a NiII/III/IV pathway for this transformation.
Collapse
Affiliation(s)
- Emily L Nolan
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Isaac M Blythe
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fengrui Qu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeff W Kampf
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
5
|
Mao M, Li J, Dong K, Li RP, Chen X, Liu J, Tang S. Metal-Free Late-Stage Alkylation of Tryptophan and Tryptophan-Containing Peptides with 1,3-Dithiane Derivatives. Org Lett 2023; 25:5784-5789. [PMID: 37503958 DOI: 10.1021/acs.orglett.3c02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. We report a simple, metal-free, late-stage reductive C2 alkylation of tryptophan and tryptophan-containing peptides using readily available 1,3-dithianes. This alkylation protocol has a wide substrate scope and an excellent tolerance for reactive functional groups.
Collapse
Affiliation(s)
- Mingming Mao
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kang Dong
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui-Peng Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xi Chen
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian Liu
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shouchu Tang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
6
|
Wu M, Lian N, Wu C, Wu X, Chen H, Lin C, Zhou S, Ke F. Metal-free visible-induced C(sp 2)-C(sp 2) coupling of quinoxalin-2( H)-ones via oxidative cleavage of the C-N bond. RSC Adv 2023; 13:18328-18331. [PMID: 37333794 PMCID: PMC10274563 DOI: 10.1039/d3ra03479h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
A C(sp2)-C(sp2) reaction between aromatic hydrazines and quinoxalines has been developed through a photocatalytic system. The protocol is established for C(sp2)-N bond cleavage and direct C(sp2)-H functionalization for the coupling of C(sp2)-C(sp2) via photocatalysis under mild and ideal air conditions without the presence of a strong base and metal. The mechanistic studies reveal that the generation of a benzene radical via the oxidative cleavage of aromatic hydrazines for the cross-coupling of C(sp2)-C(sp2) with the assistance of a photocatalyst is essential. The process exhibits excellent compatibility with functional groups and provides convenient access to various 3-arylquinoxalin-2(1H)-ones in good to excellent yields.
Collapse
Affiliation(s)
- Mei Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Nancheng Lian
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 China
| | - Cuimin Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Xinyao Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Houzheng Chen
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Chen Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Sunying Zhou
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Fang Ke
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| |
Collapse
|
7
|
Sreedharan R, Pal PK, Panyam PKR, Priyakumar UD, Gandhi T. Synthesis of α‐aryl ketones by harnessing the non‐innocence of toluene and its derivatives: Enhancing the acidity of methyl arenes by a Brønsted base and their mechanistic aspects. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramdas Sreedharan
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - Pradeep Kumar Pal
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Pradeep Kumar Reddy Panyam
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - U Deva Priyakumar
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Thirumanavelan Gandhi
- VIT University Materials Chemistry Division, School of Advanced Sciences VIT University 632014 Vellore INDIA
| |
Collapse
|
8
|
Jagtap RA, Pradhan C, Gonnade RG, Punji B. An Efficient Route to 3,3'-Biindolinylidene-diones by Iron-Catalyzed Dimerization of Isatins. Chem Asian J 2022; 17:e202200414. [PMID: 35608328 DOI: 10.1002/asia.202200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Iron-catalyzed dimerization of various isatin derivatives is described for the efficient synthesis of 3,3'-biindolinylidene-diones (isoindigos). The reaction provides easy access to self-coupled and cross-coupled 3,3'-indolinylidene-diones that have high relevance to biology and materials. This Fe(0)- or Fe(II)-catalyzed dimerization reaction tolerates a wide range of functionalities, such as fluoro, chloro, bromo, alkenyl, nitrile, ether, ester, pyrrolyl, indolyl and carbazolyl groups, including cyclic and acyclic alkyls as well as an alkyl-bearing fatty-alcohol moiety. Especially, the coupling between two distinct isatins provided excellent selectivity for the cross-dimerization with trace of self-couplings. The single-crystal X-ray diffraction study established the molecular structure of eight dimerized products. A preliminary mechanistic study of the Fe-catalyzed dimerization supported the radical pathway for the reaction.
Collapse
Affiliation(s)
- Rahul A Jagtap
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr Homi Bhabha Road, 411008, Pune, INDIA
| | - Chandini Pradhan
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr Homi Bhabha Road, 411008, Pune, INDIA
| | - Rajesh G Gonnade
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Centre for Material Characterization, Dr Homi Bhabha Road, 411008, Pune, INDIA
| | - Benudhar Punji
- National Chemical Laboratory CSIR, Chemical Engineering Division, Dr. Homi Bhabha Road, 411008, Pune, INDIA
| |
Collapse
|
9
|
Liang Y, Niu L, Liang X, Wang S, Wang P, Lei A. Electrooxidation‐Induced
C(sp
3
)‐H/ C(sp
2
)‐H
Radical‐Radical
Cross‐coupling between Xanthanes and Electron‐rich Arenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuwei Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Linbin Niu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Xing‐An Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Pengjie Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
10
|
Verma SK, Punji B. Manganese-Catalyzed C(sp2)-H Alkylation of Indolines and Arenes with Unactivated Alkyl Bromides. Chem Asian J 2022; 17:e202200103. [PMID: 35289105 DOI: 10.1002/asia.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Selective C(sp 2 ) - H bond alkylation of indoline, carbazole and (2-pyridinyl)arenes with unactivated alkyl bromides is achieved using MnBr 2 catalyst in the absence of an external ligand. The alkylation uses a simple LiHMDS base and avoids the necessity of Grignard reagent, unlike other Mn-catalyzed C - H functionalization. This reaction proceeded either through a five- or a less-favored six-membered metallacycle, and tolerated diverse functionalities, including alkenyl, alkynyl, silyl, aryl ether, pyrrolyl, indolyl, carbazolyl and alkyl bearing fatty alcohol and polycyclic-steroid moieties. Alkylation follows a single electron transfer (SET) pathway involving 1e oxidative addition of alkyl bromide and a rate-limiting C-H metalation.
Collapse
Affiliation(s)
- Suryadev K Verma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr. Homi Bhabha Road, Pune, 411008, Pune, INDIA
| | - Benudhar Punji
- National Chemical Laboratory CSIR, Chemical Engineering Division, Dr. Homi Bhabha Road, 411008, Pune, INDIA
| |
Collapse
|
11
|
Yao C, Zhang T, Gonçalves TP, Huang KW. Selective benzylic C sp3-H bond activations mediated by a phosphorus-nitrogen PN 3P-nickel complex. Chem Commun (Camb) 2022; 58:1593-1596. [PMID: 35018914 DOI: 10.1039/d1cc06507f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In contrast to the typical Csp2-H activation, a PN3P-Nickel complex chemoselectively cleaved the benzylic Csp3-H bond of toluene in the presence of KHMDS, presumably via an in situ generated potassium benzyl intermediate. Under similar conditions, CO underwent deoxygenation to afford the corresponding nickel cyano complex, and ethylbenzene was dehydrogenated to give styrene and a nickel hydride compound. 2,6-Xylyl isocyanide was transformed into an unprecedented indolyl complex, likely by trapping the activated benzyl species with an isocyanide moiety.
Collapse
Affiliation(s)
- Changguang Yao
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.,KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Tonghuan Zhang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. .,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Théo P Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
12
|
Sudhakaran S, Shinde PG, Aratikatla EK, Kaulage SH, Rana P, Parit RS, Kavale DS, Senthilkumar B, Punji B. Nickel-Catalyzed Asymmetric Hydrogenation for the Synthesis of a Key Intermediate of Sitagliptin. Chem Asian J 2022; 17:e202101208. [PMID: 34817131 DOI: 10.1002/asia.202101208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Nickel-catalyzed enantioselective hydrogenation of enamines leading to the efficient synthesis of 3-R-Boc-amino-4-(2,4,5-trifluorophenyl)butyric esters, the key intermediate of the blockbuster antidiabetic drug (R)-SITAGLIPTIN, is described. The sitagliptin motifs were isolated in more than 99% yield and with 75-92% ee using the earth-abundant nickel catalyst. Upon chiral resolution with (R)- and (S)-1-phenylethylamines, the partially enantioenriched (R)- and (S)-Boc-3-amino-4-(2,4,5-trifluorophenyl)butanoic acids provided >99.5% ee of the crucial sitagliptin intermediate. The asymmetric hydrogenation protocol was scaled up to 10 g with consistency in yield and ee, and has been reproduced in multiple batches.
Collapse
Affiliation(s)
- Shana Sudhakaran
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Prasad G Shinde
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Eswar K Aratikatla
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sandeep H Kaulage
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Priksha Rana
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ratan S Parit
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dattatry S Kavale
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Beeran Senthilkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
13
|
Cai C, Zou D. Recent Progress in Benzylic C(sp 3)—H Functionalization of Toluene and Its Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Sharma DM, Gouda C, Gonnade RG, Punji B. Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent (NNN)Co(ii) catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature chemo- and stereoselective hydrogenation of alkynes is described using a well-defined and phosphine-free hemilabile cobalt catalyst.
Collapse
Affiliation(s)
- Dipesh M. Sharma
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| | - Chandrakant Gouda
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
- Centre for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune – 411 008, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| |
Collapse
|
15
|
Sivaraj C, Gandhi T. Alternative and Uncommon Acylating Agents - An Alive and Kicking Methodology. Chem Asian J 2021; 16:2773-2794. [PMID: 34331736 DOI: 10.1002/asia.202100691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Functionalizing and derivatising organic molecules is a centerpiece in organic synthesis. Succinctly manipulating and installing acyl moieties in organic molecules spurred the interest of chemists owing to its occurrence in natural products, bioactive molecules, pharmaceuticals, and advanced materials. Traditionally, access to acylation reaction was achieved by Friedel-Crafts reaction, Schotten-Baumann, and Vilsmeier-Haack acylation, however, these protocols own pitfalls. Further to make the acylation process attractive and environmentally friendly, toluene, aldehydes, alcohols, α-keto acids, amines, amides, esters, ethers, nitriles, alkynes, alkenes, ketenes, N-acylbenzotriazoles, ketones, thioacids, oximes, thiazolium carbinols, PIDA, diacyl disulfides and acyl salts were used as an acyl surrogates/reagents. Amusingly, these acylating reagents are considered uncommon and alternative to carboxylic acids, acid chlorides and acetic anhydrides. This short review aims to encompass the usage of acylating agents in transition-metal, metal-free, light-driven and other demanding conditions, and thus reveals their practicality.
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Chandrasekaran Sivaraj and Thirumanavelan Gandhi, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Chandrasekaran Sivaraj and Thirumanavelan Gandhi, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
16
|
Ankade SB, Samal PP, Soni V, Gonnade RG, Krishnamurty S, Punji B. Ni(II)-Catalyzed Intramolecular C–H/C–H Oxidative Coupling: An Efficient Route to Functionalized Cycloindolones and Indenoindolones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pragnya Paramita Samal
- Physical and Materials Chemistry Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vineeta Soni
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh G. Gonnade
- Centre for Material Characterization, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Wu Z, Wu Z, Sun X, Qi W, Zhang Z, Zhang Y. Palladium-Catalyzed Intramolecular Cross-Coupling of Unactivated C(sp 3)-H and C(sp 2)-H Bonds. Org Lett 2021; 23:7161-7165. [PMID: 34477389 DOI: 10.1021/acs.orglett.1c02567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct C-H/C-H coupling represents an appealing method for the construction of C-C bonds, and the cross-coupling of unactivated C(sp3)-H and C(sp2)-H bonds is challenging and remains to be investigated. We have developed the Pd-catalyzed intramolecular coupling of inert C(sp3)-H and C(sp2)-H bonds. The reaction proceeded by o-methyl oxime-directed aryl C(sp2)-H activation and subsequent alkyl C(sp3)-H cleavage, generating C(sp2),C(sp3)-palladacycles as the key intermediates. Dihydrobenzofurans and indanes were formed as the final products.
Collapse
Affiliation(s)
- Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zechen Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xueliang Sun
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Weixin Qi
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhengyang Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
18
|
Jagtap RA, Punji B. Nickel-Catalyzed C-H Bond Functionalization of Azoles and Indoles. CHEM REC 2021; 21:3573-3588. [PMID: 34075686 DOI: 10.1002/tcr.202100113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Direct C-H functionalization of privileged and biologically relevant azoles and indoles represents an important chemical transformation in molecular science. Despite significant progress in the palladium-catalyzed regioselective C-H functionalization of azoles and indoles, the use of abundant and less expensive nickel catalyst is underdeveloped. In the recent past, the nickel-catalyzed regioselective C-H alkylation, arylation, alkenylation and alkynylation of azoles and indoles have been substantially explored, which can be applied to the complex organic molecule synthesis. In this Account, we summarize the developments in nickel-catalyzed regioselective functionalization of azoles and indoles with a considerable focus on the reaction mechanism.
Collapse
Affiliation(s)
- Rahul A Jagtap
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
19
|
Chowdhury R, Mendoza A. N-Hydroxyphthalimidyl diazoacetate (NHPI-DA): a modular methylene linchpin for the C-H alkylation of indoles. Chem Commun (Camb) 2021; 57:4532-4535. [PMID: 33956022 PMCID: PMC8101283 DOI: 10.1039/d1cc01026c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Despite the extensive studies on the reactions between conventional diazocompounds and indoles, these are still limited by the independent synthesis of the carbene precursors, the specific catalysts, and the required multi-step manipulation of the products. In this work, we explore redox-active carbenes in the expedited and divergent synthesis of functionalized indoles. NHPI-DA displays unusual efficiency and selectivity to yield insertion products that can be swiftly elaborated into boron and carbon substituents that are particularly problematic in carbene-mediated reactions.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
20
|
Yu H, Zhao H, Xu X, Zhang X, Yu Z, Li L, Wang P, Shi Q, Xu L. Rhodium(I)‐Catalyzed C2‐Selective Decarbonylative C−H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiyang Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zexin Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lingchao Li
- Jiangsu Zenji Pharmaceuticals Ltd. Huaian 223100 P. R. China
| | - Peng Wang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| |
Collapse
|
21
|
Bansal S, Shabade AB, Punji B. Advances in C(
sp
2
)−H/C(
sp
2
)−H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadhna Bansal
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Anand B. Shabade
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
22
|
Nickel-catalyzed oxidative dehydrogenative coupling of alkane with thiol for C(sp3)-S bond formation. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Jagtap RA, Ankade SB, Gonnade RG, Punji B. Achiral and chiral NNN-pincer nickel complexes with oxazolinyl backbones: application in transfer hydrogenation of ketones. NEW J CHEM 2021. [DOI: 10.1039/d1nj01698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NNN-based achiral and chiral (oxazolinyl)amido-pincer nickel complexes are developed and employed for the catalytic transfer hydrogenation of ketones.
Collapse
Affiliation(s)
- Rahul A. Jagtap
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| | - Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| | - Rajesh G. Gonnade
- Centre for Material Characterization
- CSIR–National Chemical Laboratory
- Pune – 411 008
- India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| |
Collapse
|
24
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
25
|
Shu B, Chen SY, Deng NX, Zheng T, Xie H, Xie XL, Wu JQ, Cao H, Zhang SS. Rhodium( iii)-catalyzed C–H/C–F activation sequence: expedient and divergent synthesis of 2-benzylated indoles and 2,2′-bis(indolyl)methanes. Org Chem Front 2021. [DOI: 10.1039/d1qo00462j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel method for the construction of fluorinated 2-benzylated indoles and 2,2’-bis(indolyl)methanes was developed via Rh(iii)-catalyzed C–H/C–F activation of arenes with employing 3,3-difluoro-2-exo-methylidene indolines as cross-coupling partner.
Collapse
Affiliation(s)
- Bing Shu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- Center for Drug Research and Development
| | - Shao-Yong Chen
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
| | - Nan-Xiang Deng
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Tao Zheng
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Hui Xie
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Xiao-Ling Xie
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|
26
|
Shao Z, Wang F, Shi J, Ma L, Li Z. Synergetic copper/TEMPO-catalysed benzylic C–H imidation with N-fluorobenzenesulfonimide at room temperature and tandem conversions with alcohols or arenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00340b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A remote carbamate-directed benzylic C–H imidation with NFSI at room temperature through synergetic CuCl-TEMPO catalysis and tandem alkoxylation or arylation with alcohols or arenes are described.
Collapse
Affiliation(s)
- Zhong Shao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
27
|
Lv N, Yu S, Hong C, Han DM, Zhang Y. Selectively Oxidative C(sp2)–H/C(sp3)–H Cross-Coupling of Benzamides with Amides by Nickel Catalysis. Org Lett 2020; 22:9308-9312. [DOI: 10.1021/acs.orglett.0c03535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
28
|
Samanta RC, Struwe J, Ackermann L. Nickela-electrocatalyzed Mild C-H Alkylations at Room Temperature. Angew Chem Int Ed Engl 2020; 59:14154-14159. [PMID: 32324948 PMCID: PMC7496282 DOI: 10.1002/anie.202004958] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/15/2022]
Abstract
Direct alkylations of carboxylic acid derivatives are challenging and particularly nickel catalysis commonly requires high reaction temperatures and strong bases, translating into limited substrate scope. Herein, nickel-catalyzed C-H alkylations of unactivated 8-aminoquinoline amides have been realized under exceedingly mild conditions, namely at room temperature, with a mild base and a user-friendly electrochemical setup. This electrocatalyzed C-H alkylation displays high functional group tolerance and is applicable to both the primary and secondary alkylation. Based on detailed mechanistic studies, a nickel(II/III/I) catalytic manifold has been proposed.
Collapse
Affiliation(s)
- Ramesh C. Samanta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
29
|
Jagtap RA, Verma SK, Punji B. MnBr 2-Catalyzed Direct and Site-Selective Alkylation of Indoles and Benzo[ h]quinoline. Org Lett 2020; 22:4643-4647. [PMID: 32491871 DOI: 10.1021/acs.orglett.0c01398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Manganese-catalyzed regioselective C-H alkylation of indoles and benzo[h]quinoline with a variety of unactivated alkyl iodides is reported. Unlike other Mn-catalyzed C-H functionalization, this protocol does not require a Grignard reagent base and employs a simple and inexpensive MnBr2 as a catalyst. This method tolerates diverse functionalities, including fluoro, chloro, bromo, iodo, alkenyl, alkynyl, pyrrolyl, and carbazolyl groups. The alkylation proceeds through a single-electron transfer pathway comprising reversible C-H manganesation and involving an alkyl radical intermediate.
Collapse
|
30
|
Samanta RC, Struwe J, Ackermann L. Nickelaelektrokatalysierte, milde C‐H‐Alkylierungen bei Raumtemperatur. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ramesh C. Samanta
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Woehler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
31
|
Zhao S, Cai S, Wang M, Rao W, Xu H, Zhang L, Chu X, Shen Z. Selective C(
sp
3
)−H Functionalization of Alkyl Esters with
N
‐/
S
‐/
O
‐Nucleophiles Using Perfluoroalkyl Iodide as Oxidant. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shi‐Wen Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Song‐Zhou Cai
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Mao‐Lin Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haiyan Xu
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology, Zhenjiang Jiangsu 212003 People's Republic of China
| | - Lei Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Xue‐Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Zhi‐Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|
32
|
Liu Y, Xia Y, Shi B. Ni‐Catalyzed Chelation‐Assisted
Direct Functionalization of Inert C—H Bonds. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900468] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan‐Hua Liu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Yu‐Nong Xia
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Bing‐Feng Shi
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
33
|
Chen J, Li M, Zhang J, Sun W, Jiang Y. Copper-Catalyzed Functionalization of Aza-Aromatic Rings with Fluoroalcohols via Direct C(sp2)–H/C(sp3)–H Coupling Reactions. Org Lett 2020; 22:3033-3038. [DOI: 10.1021/acs.orglett.0c00797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinli Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
34
|
Zhang S, Struwe J, Hu L, Ackermann L. Nickela-electrocatalyzed C-H Alkoxylation with Secondary Alcohols: Oxidation-Induced Reductive Elimination at Nickel(III). Angew Chem Int Ed Engl 2020; 59:3178-3183. [PMID: 31729814 PMCID: PMC7028089 DOI: 10.1002/anie.201913930] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/26/2022]
Abstract
Nickela-electrooxidative C-H alkoxylations with challenging secondary alcohols were accomplished in a fully dehydrogenative fashion, thereby avoiding stoichiometric chemical oxidants, with H2 as the only stoichiometric byproduct. The nickela-electrocatalyzed oxygenation proved viable with various (hetero)arenes, including naturally occurring secondary alcohols, without racemization. Detailed mechanistic investigation, including DFT calculations and cyclovoltammetric studies of a well-defined C-H activated nickel(III) intermediate, suggest an oxidation-induced reductive elimination at nickel(III).
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lianrui Hu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
35
|
Zhang S, Struwe J, Hu L, Ackermann L. Nickelaelektro‐katalysierte C‐H‐Alkoxylierung mit sekundären Alkoholen: oxidationsinduzierte reduktive Eliminierung an Nickel(III). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lianrui Hu
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
36
|
Wang SY, Shi XC, Laborda P. Indole-based melatonin analogues: Synthetic approaches and biological activity. Eur J Med Chem 2020; 185:111847. [DOI: 10.1016/j.ejmech.2019.111847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
37
|
Zhang D, Fang Z, Cai J, Liu C, He W, Duan J, Qin N, Yang Z, Guo K. The copper(ii)-catalyzed and oxidant-promoted regioselective C-2 difluoromethylation of indoles and pyrroles. Chem Commun (Camb) 2020; 56:8119-8122. [DOI: 10.1039/d0cc03345f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and efficient approach for the highly selective C-2 difluoromethylation of indole derivatives was developed by using sodium difluoromethylsulfinate (HCF2SO2Na) as the source of difluoromethyl groups and a Cu(ii) complex as the catalyst.
Collapse
Affiliation(s)
- Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| | - Jinlin Cai
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| | - Ning Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| | - Zhao Yang
- College of Engineering China Pharmaceutical University, 24 Tongjiaxiang
- Nanjing
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S
- Nanjing
- China
| |
Collapse
|
38
|
Yang D, Hu J, Zhang H, Lv X, Chen Y, Fu W. Visible‐Light‐Driven Self‐Coupling of Methylarenes Catalyzed by Ni
2
P@Cd
0.5
Zn
0.5
S Nanoparticles. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan‐Dan Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU‐CAS Joint Laboratory on New Materials Chinese Academy of Sciences 100190 Beijing P. R. China
- Materials and HKU‐CAS Joint Laboratory on New Materials University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Jia‐Jun Hu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU‐CAS Joint Laboratory on New Materials Chinese Academy of Sciences 100190 Beijing P. R. China
- Materials and HKU‐CAS Joint Laboratory on New Materials University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering Materials and HKU‐CAS Joint Laboratory on New Materials Yunnan Normal University 650092 Kunming P. R. China
| | - Xiao‐Jun Lv
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU‐CAS Joint Laboratory on New Materials Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU‐CAS Joint Laboratory on New Materials Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Wen‐Fu Fu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU‐CAS Joint Laboratory on New Materials Chinese Academy of Sciences 100190 Beijing P. R. China
- College of Chemistry and Chemical Engineering Materials and HKU‐CAS Joint Laboratory on New Materials Yunnan Normal University 650092 Kunming P. R. China
| |
Collapse
|
39
|
Jagtap RA, Punji B. C−H Functionalization of Indoles by 3d Transition‐Metal Catalysis. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900554] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rahul A. Jagtap
- Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL)Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| | - Benudhar Punji
- Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL)Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| |
Collapse
|
40
|
Pandey DK, Ankade SB, Ali A, Vinod CP, Punji B. Nickel-catalyzed C-H alkylation of indoles with unactivated alkyl chlorides: evidence of a Ni(i)/Ni(iii) pathway. Chem Sci 2019; 10:9493-9500. [PMID: 32110305 PMCID: PMC7017866 DOI: 10.1039/c9sc01446b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/17/2019] [Indexed: 11/21/2022] Open
Abstract
A mild and efficient nickel-catalyzed method for the coupling of unactivated primary and secondary alkyl chlorides with the C-H bond of indoles and pyrroles is described which demonstrates a high level of chemo and regioselectivity. The reaction tolerates numerous functionalities, such as halide, alkenyl, alkynyl, ether, thioether, furanyl, pyrrolyl, indolyl and carbazolyl groups including acyclic and cyclic alkyls under the reaction conditions. Mechanistic investigation highlights that the alkylation proceeds through a single-electron transfer (SET) process with Ni(i)-species being the active catalyst. Overall, the alkylation follows a Ni(i)/Ni(iii) pathway involving the rate-influencing two-step single-electron oxidative addition of alkyl chlorides.
Collapse
Affiliation(s)
- Dilip K Pandey
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Shidheshwar B Ankade
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Abad Ali
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
| | - C P Vinod
- Catalysis Division , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| |
Collapse
|
41
|
Yazaki R, Ohshima T. Recent strategic advances for the activation of benzylic C–H bonds for the formation of C–C bonds. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Pandey DK, Vijaykumar M, Punji B. Nickel-Catalyzed C(2)-H Arylation of Indoles with Aryl Chlorides under Neat Conditions. J Org Chem 2019; 84:12800-12808. [PMID: 31321982 DOI: 10.1021/acs.joc.9b01375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nickel-catalyzed regioselective C(2)-H arylation of indoles and pyrroles with aryl chlorides is achieved under neat conditions. This method allows the efficient coupling of diverse aryl chlorides employing a user-friendly and inexpensive Ni(OAc)2/dppf catalyst system at 80 °C. Numerous functionalities, such as halides, alkyl ether, fluoro-alkyl ether, and thioether, and substituted amines, including heteroarenes like benzothiazolyl, pyrrolyl, indolyl, and carbazolyl, are well tolerated under the reaction conditions. The preliminary mechanistic study highlights a single-electron transfer (SET) pathway for the arylation reaction.
Collapse
Affiliation(s)
- Dilip K Pandey
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India
| | - Muniyappa Vijaykumar
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India
| |
Collapse
|
43
|
Yu W, Wu W, Jiang H. Copper‐Catalyzed Benzylic C—H Functionalization, Oxidation and Cyclization of Methylarenes: Direct Access to 2‐Arylbenzothiazoles. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wentao Yu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Wanqing Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
44
|
Lafzi F, Kilic H, Saracoglu N. Protocols for the Syntheses of 2,2'-Bis(indolyl)arylmethanes, 2-Benzylated Indoles, and 5,7-Dihydroindolo[2,3- b]carbazoles. J Org Chem 2019; 84:12120-12130. [PMID: 31454241 DOI: 10.1021/acs.joc.9b02124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrophilic substitution reaction of 4,7-dihydroindole with aryl-aldehydes as an electrophilic partner followed by an oxidation step to deliver 2,2'-bis(indolyl)arylmethanes was studied for the first time. The reaction afforded regioselectivity at the 2,2'-positions of indole in an operationally simple and inexpensive procedure with a variety of substrates. To the best of our knowledge, this is the first set of examples of 2,2'-bis(indolyl)arylmethanes obtained in a substituent-free manner. A facile method from dipyrromethanes to the corresponding 2-benzylindoles was also reported. In addition, 2,2'-bis(indolyl)arylmethanes were converted to 5,7-dihydroindolo[2,3-b]carbazoles.
Collapse
Affiliation(s)
- Ferruh Lafzi
- Department of Chemistry, Faculty of Sciences , Atatürk University , Erzurum 25240 , Turkey
| | - Haydar Kilic
- Department of Chemistry, Faculty of Sciences , Atatürk University , Erzurum 25240 , Turkey.,Oltu Vocational Training School , Atatürk University , Erzurum 25400 , Turkey
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences , Atatürk University , Erzurum 25240 , Turkey
| |
Collapse
|
45
|
|
46
|
Sharma DM, Punji B. Selective Synthesis of Secondary Amines from Nitriles by a User‐Friendly Cobalt Catalyst. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dipesh M. Sharma
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NCL Pune 411 008 India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NCL Pune 411 008 India
| |
Collapse
|
47
|
Beyond Friedel and Crafts: Directed Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7202-7236. [DOI: 10.1002/anie.201806629] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Indexed: 11/07/2022]
|
48
|
Huang W, Li X, Song X, Luo Q, Li Y, Dong Y, Liang D, Wang B. Benzylarylation of N-Allyl Anilines: Synthesis of Benzylated Indolines. J Org Chem 2019; 84:6072-6083. [PMID: 31021621 DOI: 10.1021/acs.joc.9b00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unprecedented benzylic C-H functionalization of methyl arenes across unactivated alkenes is presented. In the presence of MnCl2·4H2O and di- tert-butyl peroxide, N-allyl anilines underwent benzylation/cyclization cascade to give benzylated indolines, which are a previously unmet synthetic goal. This protocol features simple operation, broad substrate scope, and great exo selectivity.
Collapse
Affiliation(s)
- Wenzhong Huang
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Xiulan Li
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Xuemei Song
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Qing Luo
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Yanping Li
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Deqiang Liang
- Department of Chemistry , Kunming University , Kunming 650214 , China.,Yunnan Engineering Technology Research Center for Plastic Films , Kunming 650214 , China
| | - Baoling Wang
- Department of Chemistry , Kunming University , Kunming 650214 , China.,Yunnan Engineering Technology Research Center for Plastic Films , Kunming 650214 , China
| |
Collapse
|
49
|
Li T, Wang Z, Chen C, Zhu B. Rhodium‐Catalyzed C−H Functionalization of
N
‐(2‐Pyrimidyl)indole with Internal Alkynes: Formation of Unexpected Products by Regulating the Amount of Silver Acetate. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
50
|
Omer H, Liu P. Computational Study of the Ni-Catalyzed C-H Oxidative Cycloaddition of Aromatic Amides with Alkynes. ACS OMEGA 2019; 4:5209-5220. [PMID: 31459693 PMCID: PMC6648058 DOI: 10.1021/acsomega.9b00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 06/10/2023]
Abstract
The mechanism of Ni-catalyzed ortho C(sp2)-H oxidative cycloaddition of aromatic amides with internal alkynes containing 2-pyridinylmethylamine directing group was investigated using density functional theory (DFT) calculations. The C-H cleavage step proceeds via σ-complex-assisted metathesis (σ-CAM) with an alkenyl-Ni(II) complex. This is in contrast to the more common carboxylate/carbonate-assisted concerted metalation-deprotonation mechanism in related Ni-catalyzed C-H bond functionalization reactions with N,N-bidentate directing groups. In this reaction, the alkyne not only serves as the coupling partner, but also facilitates the σ-CAM C-H metalation both kinetically and thermodynamically. The subsequent functionalization of the five-membered nickelacycle proceeds via alkyne insertion into the Ni-C bond to form a seven-membered nickelacycle. This process proceeds with high levels of regioselectivity to form a C-C bond with sterically more encumbered alkyne terminus. This unusual regioselectivity is due to steric repulsions with the directing group that is coplanar with the alkyne in the migratory insertion transition state. The C-N bond reductive elimination to form the isoquinolone cycloadduct is promoted by PPh3 complexation to the Ni center and the use of flexible 2-pyridinylmethylamine directing group. The origin of the cis-trans isomerism of alkene byproduct was also explained by computations.
Collapse
Affiliation(s)
- Humair
M. Omer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|