1
|
Xu K, Xie Z, Kang X, Wu R. Probing intermediate folding patterns determined the carbon skeleton construction mechanism of cyathane diterpene. Phys Chem Chem Phys 2025. [PMID: 40420776 DOI: 10.1039/d5cp01137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Cyathane diterpenes exhibit a range of notable pharmacological activities. These compounds share a common skeleton, the cyathin tricyclic core, whose synthesis is intricate, involving carbon cation rearrangement that results in the formation of three carbon rings and multiple stereocenters. Through DFT calculations, we found that the folding pattern of intermediates significantly impacts the reaction. Firstly, the A ring adopts a chair-like conformation, which is more favorable than the boat-like conformation. Secondly, a hydrogen atom attached to the terminal double bond can adopt either an up or down conformation, leading to different mechanisms for B expansion and C ring formation: concerted or stepwise, respectively. The stepwise mechanism, induced by the up conformation, is energetically more favorable than the down conformation. Further analysis of bond order, key distances and natural bond orbital revealed that the transition from the concerted mechanism to the stepwise mechanism is due to van der Waals repulsion between two H atoms attached to the reactive carbons involved in C ring formation. Finally, during QM(GFN2-xTB)/MM MD simulations, it was observed that the A ring transitions from a boat-like conformation to a chair-like conformation, and the H-down conformation switches to the H-up conformation within the cyathane synthase pocket. These transitions are consistent with the preferences observed in gas-phase calculations. This research reveals that distinct conformations give rise to different reaction mechanisms, an intriguing finding that provides deeper insight into the biosynthetic pathways of natural compounds and offers theoretical guidance for their biomimetic synthesis.
Collapse
Affiliation(s)
- Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhekai Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Xu Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Johnson LA, Allemann RK. Engineering terpene synthases and their substrates for the biocatalytic production of terpene natural products and analogues. Chem Commun (Camb) 2025; 61:2468-2483. [PMID: 39784321 PMCID: PMC11715646 DOI: 10.1039/d4cc05785f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Terpene synthases produce a wide number of hydrocarbon skeletons by controlling intramolecular rearrangements of allylic pyrophosphate subtrates via reactive carbocation intermediates. Here we review recent research focused on engineering terpene synthases and modifying their substrates to rationally manipulate terpene catalyisis. Molecular dynamic simulations and solid state X-ray crystallography are powerful techniques to identify substrate binding modes, key active site residues for substrate folding, and the location of active site water. Variants in specific 'hotspots' of terpene synthases including the G1/2, K/H and Hα-1 helices have been targeted to modify active site water management and yield new products. We discuss the potential of exploiting substrate analogues to synthesise novel compounds and briefly outline biphasic flow systems for biocatalysis of terpenes. We forsee greater applications for terpenes as the field converges on effective methods for engineering of terpene synthases by new computational and high throughput experimental methods and for high-yield production. It is crucial when engineering terpene synthases that both product distribution and enzyme activity are simultaneously optimised.
Collapse
Affiliation(s)
- Luke Alan Johnson
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| | - Rudolf Konrad Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| |
Collapse
|
3
|
Zhang W, Wang X, Zhu G, Zhu B, Peng K, Hsiang T, Zhang L, Liu X. Function Switch of a Fungal Sesterterpene Synthase through Molecular Dynamics Simulation Assisted Alteration of an Aromatic Residue Cluster in the Active Pocket of PfNS. Angew Chem Int Ed Engl 2024; 63:e202406246. [PMID: 38934471 DOI: 10.1002/anie.202406246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Terpene synthases (TPSs) play pivotal roles in generating diverse terpenoids through complex cyclization pathways. Protein engineering of TPSs offers a crucial approach to expanding terpene diversity. However, significant potential remains untapped due to limited understanding of the structure-function relationships of TPSs. In this investigation, using a joint approach of molecular dynamics simulations-assisted engineering and site-directed mutagenesis, we manipulated the aromatic residue cluster (ARC) of a bifunctional terpene synthase (BFTPS), Pestalotiopsis fici nigtetraene synthase (PfNS). This led to the discovery of previously unreported catalytic functions yielding different cyclization patterns of sesterterpenes. Specifically, a quadruple variant (F89A/Y113F/W193L/T194W) completely altered PfNS's function, converting it from producing the bicyclic sesterterpene nigtetraene to the tricyclic ophiobolin F. Additionally, analysis of catalytic profiles by double, triple, and quadruple variants demonstrated that the ARC functions as a switch, unprecedently redirecting the production of 5/11 bicyclic (Type B) sesterterpenes to 5/15 bicyclic (Type A) ones. Molecular dynamics simulations and theozyme calculations further elucidated that, in addition to cation-π interactions, C-H⋅⋅⋅π interactions also play a key role in the cyclization patterns. This study offers a feasible strategy in protein engineering of TPSs for various industrial applications.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
- School of Life Sciences, Ludong University, 264025, Yantai, Shandong, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Bin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Kaitong Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| |
Collapse
|
4
|
Guo W, Kong WY, Tantillo DJ. Revisiting a classic carbocation - DFT, coupled-cluster, and ab initio molecular dynamics computations on barbaralyl cation formation and rearrangements. Chem Sci 2024; 15:d4sc04829f. [PMID: 39268206 PMCID: PMC11385376 DOI: 10.1039/d4sc04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Density functional theory computations were used to model the formation and rearrangement of the barbaralyl cation (C9H+ 9). Two highly delocalized minima were located for C9H+ 9, one of C s symmetry and the other of D 3h symmetry, with the former having lower energy. Quantum chemistry-based NMR predictions affirm that the lower energy structure is the best match with experimental spectra. Partial scrambling was found to proceed through a C 2 symmetric transition structure associated with a barrier of only 2.3 kcal mol-1. The full scrambling was found to involve a C 2v symmetric transition structure associated with a 5.0 kcal mol-1 barrier. Ab initio molecular dynamics simulations initiated from the D 3h C9H+ 9 structure revealed its connection to six minima, due to the six-fold symmetry of the potential energy surface. The effects of tunneling and boron substitution on this complex reaction network were also examined.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, Univeristy of California Davis USA
| | - Wang-Yeuk Kong
- Department of Chemistry, Univeristy of California Davis USA
| | | |
Collapse
|
5
|
Srividya N, Kim H, Simone R, Lange BM. Chemical diversity in angiosperms - monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:28-55. [PMID: 38565299 DOI: 10.1111/tpj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| | - Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Raugei Simone
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| |
Collapse
|
6
|
Tarannam N, Gupta PK, Zev S, Major DT. Stability trends in carbocation intermediates stemming from germacrene A and hedycaryol. Beilstein J Org Chem 2024; 20:1189-1197. [PMID: 38887567 PMCID: PMC11181226 DOI: 10.3762/bjoc.20.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
In the current work, we analyzed the origin of difference in stabilities among the germacrene A and hedycaryol-derived carbocations. This study focused on twelve hydrocarbons derived from germacrene A and twelve from hedycaryol, which can be divided into three groups: four molecules containing 6-6 bicyclic rings, four 5-7 bicyclic compounds with the carbocation being on the seven-membered ring and the remaining four 5-7 bicyclic compounds with the carbocation on the five-membered ring. The variations in energy within the groups of carbocations (i.e., 6-6 and two kinds of 5-7 bicyclic carbocations) can be ascribed to intramolecular repulsion interactions, as seen from non-covalent interactions plots. Despite the structural similarities between germacrene A and hedycaryol cations, they possess a somewhat different stability trend. These differences are attributed to C+···OH intramolecular interactions present in some hedycaryol cations, which are absent in the carbocations derived from germecrene A.
Collapse
Affiliation(s)
- Naziha Tarannam
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shani Zev
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
7
|
Schwartz R, Zev S, Major DT. Mechanistic docking in terpene synthases using EnzyDock. Methods Enzymol 2024; 699:265-292. [PMID: 38942507 DOI: 10.1016/bs.mie.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpene Synthases (TPS) catalyze the formation of multicyclic, complex terpenes and terpenoids from linear substrates. Molecular docking is an important research tool that can further our understanding of TPS multistep mechanisms and guide enzyme design. Standard docking programs are not well suited to tackle the unique challenges of TPS, like the many chemical steps which form multiple stereo-centers, the weak dispersion interactions between the isoprenoid chain and the hydrophobic region of the active site, description of carbocation intermediates, and finding mechanistically meaningful sets of docked poses. To address these and other unique challenges, we developed the multistate, multiscale docking program EnzyDock and used it to study many TPS and other enzymes. In this review we discuss the unique challenges of TPS, the special features of EnzyDock developed to address these challenges and demonstrate its successful use in ongoing research on the bacterial TPS CotB2.
Collapse
Affiliation(s)
- Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Shani Zev
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
8
|
Lu X, Bai J, Tian Z, Li C, Ahmed N, Liu X, Cheng J, Lu L, Cai J, Jiang H, Wang W. Cyclization mechanism of monoterpenes catalyzed by monoterpene synthases in dipterocarpaceae. Synth Syst Biotechnol 2024; 9:11-18. [PMID: 38173809 PMCID: PMC10758623 DOI: 10.1016/j.synbio.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Monoterpenoids are typically present in the secretory tissues of higher plants, and their biosynthesis is catalyzed by the action of monoterpene synthases (MTSs). However, the knowledge about these enzymes is restricted in a few plant species. MTSs are responsible for the complex cyclization of monoterpene precursors, resulting in the production of diverse monoterpene products. These enzymatic reactions are considered exceptionally complex in nature. Therefore, it is crucial to understand the catalytic mechanism of MTSs to elucidate their ability to produce diverse or specific monoterpenoid products. In our study, we analyzed thirteen genomes of Dipterocarpaceae and identified 38 MTSs that generate a variety of monoterpene products. By focusing on four MTSs with different product spectra and analyzing the formation mechanism of acyclic, monocyclic and bicyclic products in MTSs, we observed that even a single amino acid mutation can change the specificity and diversity of MTS products, which is due to the synergistic effect between the shape of the active cavity and the stabilization of carbon-positive intermediates that the mutation changing. Notably, residues N340, I448, and phosphoric acid groups were found to be significant contributors to the stabilization of intermediate terpinyl and pinene cations. Alterations in these residues, either directly or indirectly, can impact the synthesis of single monoterpenes or their mixtures. By revealing the role of key residues in the catalytic process and establishing the interaction model between specific residues and complex monoterpenes in MTSs, it will be possible to reasonably design and engineer different catalytic activities into existing MTSs, laying a foundation for the artificial design and industrial application of MTSs.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Congyu Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Nida Ahmed
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaonan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lina Lu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| |
Collapse
|
9
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
10
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
11
|
Chen SC, Jiang BC, Lu YJ, Chang CH, Wu TH, Lin SW, Yin HW, Lee TH, Hsu CH. Characterization and Crystal Structures of a Cubebol-Producing Sesquiterpene Synthase from Antrodia cinnamomea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13014-13023. [PMID: 37566786 DOI: 10.1021/acs.jafc.3c00570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Antrodia cinnamomea is an endemic species found in Taiwan, known for its medicinal properties in treating various discomforts, including inflammation, diarrhea, abdominal pain, and other diseases. A. cinnamomea contains terpenoids that exhibit numerous bioactivities, making them potential food additives. This discovery piqued our interest in uncovering their biosynthetic pathway. Herein, we conducted functional and structural characterization of a sesquiterpene synthase Cop4 from A. cinnamomea (AcCop4). Through gas chromatography-mass spectrometry analysis, we observed that AcCop4 catalyzes the cyclization of farnesyl pyrophosphate (FPP), primarily producing cubebol. Cubebol is widely used as a long-lasting cooling and refreshing agent in the food industry. The structure of AcCop4, complexed with pyrophosphate and magnesium ions, revealed the closure of the active site facilitated by R311. Interestingly, binding of pyrophosphate and magnesium ions did not cause any significant conformational change in the G1/2 helix of AcCop4, indicating that the apo form is not fully open. This high-resolution structure serves as a solid basis for understanding the biosynthetic mechanism of AcCop4 and supports further production and modification of cubebol for its applications in the food industry.
Collapse
Affiliation(s)
- Sheng-Chia Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Fisheries Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Chen Jiang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ju Lu
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Hao Chang
- Institute of Fisheries Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Han Wu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Sheng-Wei Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Hua-Wen Yin
- Institute of Fisheries Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
12
|
de Oliveira MT, Alves JMA, Vrech NL, Braga AAC, Barboza CA. A comprehensive benchmark investigation of quantum chemical methods for carbocations. Phys Chem Chem Phys 2023; 25:1903-1922. [PMID: 36541431 DOI: 10.1039/d2cp04603b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of various density functional approximations (DFAs) and an emphasis on popular methods without any consensus have prevailed in computational studies dedicated to carbocations. More importantly, an extensive and rigorous benchmark investigation on density functionals for the class is still lacking. To close this gap, we present a comprehensive benchmark study of quantum chemical methods on a series of classical and nonclassical carbocations, the CARBO33 dataset. We evaluate a total of 107 DFT methods from all rungs giving particular attention to double hybrid density functionals as the potential of the class has been largely undermined in the context of carbocations. To support our findings, DLPNO-CCSD(T) at the complete basis set (CBS) limit and W1-F12 are used as reference methods. Our results indicate that the composite CBS-QB3 method performs poorly and should not be adopted for target energies. Oftentimes, the tested DFAs of a lower rung perform better than several DFAs in a higher rung of Perdew's "Jacob's ladder". Nonetheless, double hybrids DSD-PBEP86-NL and ωB97X-2-D3(BJ) stand out by showing the overall best performance. Among the hybrids evaluated, about half of them show mean absolute deviation (MAD) below 1.1 kcal mol-1, including the popular hybrids M06-2X and mPW1PW91. In this family, MN15-D3(BJ) performs particularly well (MAD = 0.77 kcal mol-1) displaying reliable results across various tests. Highly popular B3LYP exhibited one of the worst performances (MAD = 4.74 kcal mol-1), and we do not recommend its application to carbocations. We also assess the 24 general-purpose basis sets of single- up to quadruple-ζ quality. The best compromise between accuracy and computational cost is achieved with cc-pVTZ followed by def2-TZVP. Computations on larger structures of general interest, including terpene carbocations, are also presented for selected DFT methods confirming general trends in the results.
Collapse
Affiliation(s)
- Marcelo T de Oliveira
- Department of Chemistry and Physics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia. .,Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Júlia M A Alves
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Natália L Vrech
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Ataualpa A C Braga
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Cristina A Barboza
- Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, Poland
| |
Collapse
|
13
|
Zev S, Ringel M, Driller R, Loll B, Brück T, Major DT. Understanding the competing pathways leading to hydropyrene and isoelisabethatriene. Beilstein J Org Chem 2022; 18:972-978. [PMID: 35965858 PMCID: PMC9359192 DOI: 10.3762/bjoc.18.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Terpene synthases are responsible for the biosynthesis of terpenes, the largest family of natural products. Hydropyrene synthase generates hydropyrene and hydropyrenol as its main products along with two byproducts, isoelisabethatrienes A and B. Fascinatingly, a single active site mutation (M75L) diverts the product distribution towards isoelisabethatrienes A and B. In the current work, we study the competing pathways leading to these products using quantum chemical calculations in the gas phase. We show that there is a great thermodynamic preference for hydropyrene and hydropyrenol formation, and hence most likely in the synthesis of the isoelisabethatriene products kinetic control is at play.
Collapse
Affiliation(s)
- Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Ronja Driller
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany,
- Department of Molecular Biology and Genetics, Aarhus University, Danish Research Institute of Translational Neuroscience – DANDRITE, Universitetsbyen 81, 8000 Aarhus C, Denmark
| | - Bernhard Loll
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany,
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
14
|
Kim H, Srividya N, Lange I, Huchala EW, Ginovska B, Lange BM, Raugei S. Determinants of Selectivity for the Formation of Monocyclic and Bicyclic Products in Monoterpene Synthases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| | - Iris Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| | - Eden W. Huchala
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bojana Ginovska
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - B. Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| | - Simone Raugei
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| |
Collapse
|
15
|
Ringel M, Dimos N, Himpich S, Haack M, Huber C, Eisenreich W, Schenk G, Loll B, Brück T. Biotechnological potential and initial characterization of two novel sesquiterpene synthases from Basidiomycota Coniophora puteana for heterologous production of δ-cadinol. Microb Cell Fact 2022; 21:64. [PMID: 35440053 PMCID: PMC9018054 DOI: 10.1186/s12934-022-01791-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
Background Terpene synthases are versatile catalysts in all domains of life, catalyzing the formation of an enormous variety of different terpenoid secondary metabolites. Due to their diverse bioactive properties, terpenoids are of great interest as innovative ingredients in pharmaceutical and cosmetic applications. Recent advances in genome sequencing have led to the discovery of numerous terpene synthases, in particular in Basidiomycota like the wood rotting fungus Coniophora puteana, which further enhances the scope for the manufacture of terpenes for industrial purposes. Results In this study we describe the identification of two novel (+)-δ-cadinol synthases from C. puteana, Copu5 and Copu9. The sesquiterpene (+)-δ-cadinol was previously shown to exhibit cytotoxic activity therefore having an application as possible, new, and sustainably sourced anti-tumor agent. In an Escherichia coli strain, optimized for sesquiterpene production, titers of 225 mg l−1 and 395 mg l−1, respectively, could be achieved. Remarkably, both enzymes share the same product profile thereby representing the first two terpene synthases from Basidiomycota with identical product profiles. We solved the crystal structure of Copu9 in its closed conformation, for the first time providing molecular details of sesquiterpene synthase from Basidiomycota. Based on the Copu9 structure, we conducted structure-based mutagenesis of amino acid residues lining the active site, thereby altering the product profile. Interestingly, the mutagenesis study also revealed that despite the conserved product profiles of Copu5 and Copu9 different conformational changes may accompany the catalytic cycle of the two enzymes. This observation suggests that the involvement of tertiary structure elements in the reaction mechanism(s) employed by terpene synthases may be more complex than commonly expected. Conclusion The presented product selectivity and titers of Copu5 and Copu9 may pave the way towards a sustainable, biotechnological production of the potentially new bioactive (+)-δ-cadinol. Furthermore, Copu5 and Copu9 may serve as model systems for further mechanistic studies of terpenoid catalysis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01791-8.
Collapse
Affiliation(s)
- Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Nicole Dimos
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Stephanie Himpich
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Martina Haack
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Claudia Huber
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Rd, Brisbane, 4702, Australia
| | - Bernhard Loll
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
16
|
Leferink NGH, Escorcia AM, Ouwersloot BR, Johanissen LO, Hay S, van der Kamp MW, Scrutton NS. Molecular Determinants of Carbocation Cyclisation in Bacterial Monoterpene Synthases. Chembiochem 2022; 23:e202100688. [PMID: 35005823 PMCID: PMC9303655 DOI: 10.1002/cbic.202100688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Monoterpene synthases are often promiscuous enzymes, yielding product mixtures rather than pure compounds due to the nature of the branched reaction mechanism involving reactive carbocations. Two previously identified bacterial monoterpene synthases, a linalool synthase (bLinS) and a cineole synthase (bCinS), produce nearly pure linalool and cineole from geranyl diphosphate, respectively. We used a combined experimental and computational approach to identify critical residues involved in bacterial monoterpenoid synthesis. Phe77 is essential for bCinS activity, guiding the linear carbocation intermediate towards the formation of the cyclic α-terpinyl intermediate; removal of the aromatic ring results in variants that produce acyclic products only. Computational chemistry confirmed the importance of Phe77 in carbocation stabilisation. Phe74, Phe78 and Phe179 are involved in maintaining the active site shape in bCinS without a specific role for the aromatic ring. Phe295 in bLinS, and the equivalent Ala301 in bCinS, are essential for linalool and cineole formation, respectively. Where Phe295 places steric constraints on the carbocation intermediates, Ala301 is essential for bCinS initial cyclisation and activity. Our multidisciplinary approach gives unique insights into how carefully placed amino acid residues in the active site can direct carbocations down specific paths, by placing steric constraints or offering stabilisation via cation-π interactions.
Collapse
Affiliation(s)
- Nicole G H Leferink
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Andrés M Escorcia
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Bodi R Ouwersloot
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Linus O Johanissen
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Marc W van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
17
|
Leferink NGH, Scrutton NS. Predictive Engineering of Class I Terpene Synthases Using Experimental and Computational Approaches. Chembiochem 2022; 23:e202100484. [PMID: 34669250 PMCID: PMC9298401 DOI: 10.1002/cbic.202100484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Terpenoids are a highly diverse group of natural products with considerable industrial interest. Increasingly, engineered microbes are used for the production of terpenoids to replace natural extracts and chemical synthesis. Terpene synthases (TSs) show a high level of functional plasticity and are responsible for the vast structural diversity observed in natural terpenoids. Their relatively inert active sites guide intrinsically reactive linear carbocation intermediates along one of many cyclisation paths via exertion of subtle steric and electrostatic control. Due to the absence of a strong protein interaction with these intermediates, there is a remarkable lack of sequence-function relationship within the TS family, making product-outcome predictions from sequences alone challenging. This, in combination with the fact that many TSs produce multiple products from a single substrate hampers the design and use of TSs in the biomanufacturing of terpenoids. This review highlights recent advances in genome mining, computational modelling, high-throughput screening, and machine-learning that will allow more predictive engineering of these fascinating enzymes in the near future.
Collapse
Affiliation(s)
- Nicole G. H. Leferink
- Future Biomanufacturing Research HubManchester Institute of BiotechnologyDepartment of ChemistrySchool of Natural SciencesThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nigel S. Scrutton
- Future Biomanufacturing Research HubManchester Institute of BiotechnologyDepartment of ChemistrySchool of Natural SciencesThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
18
|
Zev S, Gupta PK, Pahima E, Major DT. A Benchmark Study of Quantum Mechanics and Quantum Mechanics-Molecular Mechanics Methods for Carbocation Chemistry. J Chem Theory Comput 2021; 18:167-178. [PMID: 34905380 DOI: 10.1021/acs.jctc.1c00746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbocations play key roles in classical organic reactions and have also been implicated in several enzyme families. A hallmark of carbocation chemistry is multitudes of competing reaction pathways, and to be able to distinguish between pathways with quantum chemical calculations, it is necessary to approach chemical accuracy for relative energies between carbocations. Here, we present an extensive study of the performance of selected density functional theory (DFT) methods in describing the thermochemistry and kinetics of carbocations and their corresponding neutral alkenes both in the gas-phase and within a hybrid quantum mechanics-molecular mechanics (QM/MM) framework. The density functionals are benchmarked against accurate ab initio methods such as CBS-QB3 and DLPNO-CCSD(T). Based on the findings in the gas-phase calculations of carbocations and alkenes, the best functionals are chosen and tested further for non-covalent interactions in model systems using QM and QM/MM methods. We compute the interaction energies between a model carbocation/alkane and model π, dipole, and hydrophobic systems using DFT and QM(DFT)/MM and compare with DLPNO-CCSD(T). These latter model systems are representative of side chains of amino acids such as phenylalanine/tyrosine, tryptophan, asparagine/glutamine, serine/threonine, methionine, and other hydrophobic groups. The Lennard-Jones parameters of the QM atoms in QM(DFT)/MM calculations are modified to obtain an optimal fit with the QM energies. Finally, a selected carbocation reaction is studied in the gas phase and in implicit chloroform solvent using QM and in explicit chloroform solvent using QM/MM and umbrella sampling simulations. This study highlights the highest accuracy possible with selected density functionals and QM/MM methods but also some limitations in using QM/MM methods for carbocation systems.
Collapse
Affiliation(s)
- Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Efrat Pahima
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
19
|
Xu H, Rinkel J, Chen X, Köllner TG, Chen F, Dickschat JS. Mechanistic divergence between (4 S,7 R)-germacra-(1(10) E,5 E)-dien-11-ol synthases from Dictyostelium purpureum and Streptomyces coelicolor. Org Biomol Chem 2021; 19:370-374. [PMID: 33337456 DOI: 10.1039/d0ob02361b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main product of DpTPS9 from the social amoeba Dictyostelium purpureum was identified as (4S,7R)-germacra-(1(10)E,5E)-dien-11-ol that is also known as an intermediate of bacterial geosmin synthase, but the experimentally verified cyclisation mechanisms differ. Together with the low sequence identity this points to convergent evolution. The functionality of selected residues in DpTPS9 was investigated via site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
20
|
Raz K, Driller R, Dimos N, Ringel M, Brück T, Loll B, Major DT. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. J Am Chem Soc 2020; 142:21562-21574. [PMID: 33289561 DOI: 10.1021/jacs.0c11348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Terpene synthases generate terpenes employing diversified carbocation chemistry, including highly specific ring formations, proton and hydride transfers, and methyl as well as methylene migrations, followed by reaction quenching. In this enzyme family, the main catalytic challenge is not rate enhancement, but rather structural and reactive control of intrinsically unstable carbocations in order to guide the resulting product distribution. Here we employ multiscale modeling within classical and quantum dynamics frameworks to investigate the reaction mechanism in the diterpene synthase CotB2, commencing with the substrate geranyl geranyl diphosphate and terminating with the carbocation precursor to the final product cyclooctat-9-en-7-ol. The 11-step in-enzyme carbocation cascade is compared with the same reaction in the absence of the enzyme. Remarkably, the free energy profiles in gas phase and in CotB2 are surprisingly similar. This similarity contrasts the multitude of strong π-cation, dipole-cation, and ion-pair interactions between all intermediates in the reaction cascade and the enzyme, suggesting a remarkable balance of interactions in CotB2. We ascribe this balance to the similar magnitude of the interactions between the carbocations along the reaction coordinate and the enzyme environment. The effect of CotB2 mutations is studied using multiscale mechanistic docking, machine learning, and X-ray crystallography, pointing the way for future terpene synthase design.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Nicole Dimos
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
21
|
Raz K, Levi S, Gupta PK, Major DT. Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations. Curr Opin Biotechnol 2020; 65:248-258. [PMID: 32679412 DOI: 10.1016/j.copbio.2020.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/25/2022]
Abstract
In this opinion, we review some recent work on terpene biosynthesis using multiscale simulation approaches, with special focus on contributions from our group. Terpene synthases generate terpenes employing rich carbocation chemistry, including highly specific ring formations, proton, hydride, methyl, and methylene migrations, followed by reaction quenching. In these enzymes, the main catalytic challenge is not rate enhancement, but rather control of intrinsically reactive carbocations and the resulting product distribution. Herein, we review multiscale simulations of selected mono-, sesqui-, and diterpene synthases. We point to the many tools adopted by terpene synthases to achieve correct substrate fold, carbocation formation, carbocation reaction environment, and reaction quenching. A better understanding of the toolbox employed by terpene synthases is expected to aid in the search for new enzymatic and biomimetic synthetic routes to natural and unnatural terpenes.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shani Levi
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
22
|
Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Comput Struct Biotechnol J 2020; 18:1819-1829. [PMID: 32695274 PMCID: PMC7365961 DOI: 10.1016/j.csbj.2020.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/04/2022] Open
Abstract
While chemical steps involved in bioactive cembranoid biosynthesis have been examined, the corresponding enzymatic mechanisms leading to their formation remain elusive. In the tobacco plant, Nicotiana tabacum, a putative cembratriene-ol synthase (CBTS) initiates the catalytic cascade that lead to the biosynthesis of cembratriene-4,6-diols, which displays antibacterial- and anti-proliferative activities. We report here on structural homology models, functional studies, and mechanistic explorations of this enzyme using a combination of biosynthetic and computational methods. This approach guided us to develop an efficient de novo production of five bioactive non- and monohydroxylated cembranoids. Our homology models in combination with quantum and classical simulations suggested putative principles of the CBTS catalytic cycle, and provided a possible rationale for the formation of premature olefinic side products. Moreover, the functional reconstruction of a N. tabacum-derived class II P450 with a cognate CPR, obtained by transcriptome mining provided for production of bioactive cembratriene-4,6-diols. Our combined findings provide mechanistic insights into cembranoid biosynthesis, and a basis for the sustainable industrial production of highly valuable bioactive cembranoids.
Collapse
|
23
|
Levi S, Zhang Q, Major DT. Thermodynamic and Kinetic Control Determine the Sesquiterpene Reaction Pathways Inside Nanocapsules. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shani Levi
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Dan T. Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
24
|
Raz K, Driller R, Brück T, Loll B, Major DT. Understanding the role of active site residues in CotB2 catalysis using a cluster model. Beilstein J Org Chem 2020; 16:50-59. [PMID: 31976016 PMCID: PMC6964657 DOI: 10.3762/bjoc.16.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022] Open
Abstract
Terpene cyclases are responsible for the initial cyclization cascade in the multistep synthesis of a large number of terpenes. CotB2 is a diterpene cyclase from Streptomyces melanosporofaciens, which catalyzes the formation of cycloocta-9-en-7-ol, a precursor to the next-generation anti-inflammatory drug cyclooctatin. In this work, we present evidence for the significant role of the active site's residues in CotB2 on the reaction energetics using quantum mechanical calculations in an active site cluster model. The results revealed the significant effect of the active site residues on the relative electronic energy of the intermediates and transition state structures with respect to gas phase data. A detailed understanding of the role of the enzyme environment on the CotB2 reaction cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- present address: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
- present address: Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan T Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
25
|
Kang K, Fuller J, Reath AH, Ziller JW, Alexandrova AN, Yang JY. Installation of internal electric fields by non-redox active cations in transition metal complexes. Chem Sci 2019; 10:10135-10142. [PMID: 32015820 PMCID: PMC6968733 DOI: 10.1039/c9sc02870f] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/07/2019] [Indexed: 01/26/2023] Open
Abstract
Local electric fields contribute to the high selectivity and catalytic activity in enzyme active sites and confined reaction centers in zeolites by modifying the relative energy of transition states, intermediates and/or products. Proximal charged functionalities can generate equivalent internal electric fields in molecular systems but the magnitude of their effect and impact on electronic structure has been minimally explored. To generate quantitative insight into installing internal fields in synthetic systems, we report an experimental and computational study using transition metal (M1) Schiff base complexes functionalized with a crown ether unit containing a mono- or dicationic alkali or alkaline earth metal ion (M2). The synthesis and characterization of the complexes M1 = Ni(ii) and M2 = Na+ or Ba2+ are reported. The electronic absorption spectra and density functional theory (DFT) calculations establish that the cations generate a robust electric field at the metal, which stabilizes the Ni-based molecular orbitals without significantly changing their relative energies. The stabilization is also reflected in the experimental Ni(ii/i) reduction potentials, which are shifted 0.12 V and 0.34 V positive for M2 = Na+ and Ba2+, respectively, compared to a complex lacking a proximal cation. To compare with the cationic Ni complexes, we also synthesized a series of Ni(salen) complexes modified in the 5' position with electron-donating and -withdrawing functionalities (-CF3, -Cl, -H, -tBu, and -OCH3). Data from this series of compounds provides further evidence that the reduction potential shifts observed in the cationic complexes are not due to inductive ligand effects. DFT studies were also performed on the previously reported monocationic and dicatonic Fe(ii)(CH3CN) and Fe(iii)Cl analogues of this system to analyze the impact of an anionic chloride on the electrostatic potential and electronic structure of the Fe site.
Collapse
Affiliation(s)
- Kevin Kang
- Department of Chemistry , University of California , Irvine 92697 , USA .
| | - Jack Fuller
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , CA 90095 , USA .
| | - Alexander H Reath
- Department of Chemistry , University of California , Irvine 92697 , USA .
| | - Joseph W Ziller
- Department of Chemistry , University of California , Irvine 92697 , USA .
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , CA 90095 , USA .
- California NanoSystems Institute , Los Angeles , CA 90095 , USA
| | - Jenny Y Yang
- Department of Chemistry , University of California , Irvine 92697 , USA .
| |
Collapse
|
26
|
Driller R, Garbe D, Mehlmer N, Fuchs M, Raz K, Major DT, Brück T, Loll B. Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein J Org Chem 2019; 15:2355-2368. [PMID: 31666870 PMCID: PMC6808215 DOI: 10.3762/bjoc.15.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
CotB2 catalyzes the first committed step in cyclooctatin biosynthesis of the soil bacterium Streptomyces melanosporofaciens. To date, CotB2 represents the best studied bacterial diterpene synthase. Its reaction mechanism has been addressed by isoptope labeling, targeted mutagenesis and theoretical computations in the gas phase, as well as full enzyme molecular dynamic simulations. By X-ray crystallography different snapshots of CotB2 from the open, inactive, to the closed, active conformation have been obtained in great detail, allowing us to draw detailed conclusions regarding the catalytic mechanism at the molecular level. Moreover, numerous alternative geranylgeranyl diphosphate cyclization products obtained by CotB2 mutagenesis have exciting applications for the sustainable production of high value bioactive substances.
Collapse
Affiliation(s)
- Ronja Driller
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- present address: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
- present address: Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
27
|
Das S, Shimshi M, Raz K, Nitoker Eliaz N, Mhashal AR, Ansbacher T, Major DT. EnzyDock: Protein–Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes. J Chem Theory Comput 2019; 15:5116-5134. [DOI: 10.1021/acs.jctc.9b00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Susanta Das
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mor Shimshi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | - Anil Ranu Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tamar Ansbacher
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
- Hadassah Academic College, 7 Hanevi’im Street, Jerusalem 9101001, Israel
| | - Dan T. Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
28
|
Leferink NGH, Ranaghan KE, Karuppiah V, Currin A, van der Kamp MW, Mulholland AJ, Scrutton NS. Experiment and Simulation Reveal How Mutations in Functional Plasticity Regions Guide Plant Monoterpene Synthase Product Outcome. ACS Catal 2019; 8:3780-3791. [PMID: 31157124 PMCID: PMC6542672 DOI: 10.1021/acscatal.8b00692] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoterpenes (C10 isoprenoids) are a structurally diverse group of natural compounds that are attractive to industry as flavours and fragrances. Monoterpenes are produced from a single linear substrate, geranyl diphosphate, by a group of enzymes called the monoterpene cyclases/synthases (mTC/Ss) that catalyse high-energy cyclisation reactions involving unstable carbocation intermediates. Efforts towards producing monoterpenes via biocatalysis or metabolic engineering often result in the formation of multiple products due to the nature of the highly branched reaction mechanism of mTC/Ss. Rational engineering of mTC/Ss is hampered by the lack of correlation between the active site sequence and cyclisation type. We used available mutagenesis data to show that amino acids involved in product outcome are clustered and spatially conserved within the mTC/S family. Consensus sequences for three such plasticity regions were introduced in different mTC/S with increasingly complex cyclisation cascades, including the model enzyme limonene synthase (LimS). In all three mTC/S studied, mutations in the first two regions mostly give rise to products that result from premature quenching of the linalyl or α-terpinyl cations, suggesting that both plasticity regions are involved in the formation and stabilisation of cations early in the reaction cascade. A LimS variant with mutations in the second region (S454G, C457V, M458I), produced mainly more complex bicyclic products. QM/MM MD simulations reveal that the second cyclisation is not due to compression of the C2-C7 distance in the α-terpinyl cation, but is the result of an increased distance between C8 of the α-terpinyl cation and two putative bases (W324, H579) located on the other side of the active site, preventing early termination by deprotonation. Such insights into the impact of mutations can only be obtained using integrated experimental and computational approaches, and will aid the design of altered mTC/S activities towards clean monoterpenoid products.
Collapse
Affiliation(s)
- Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Kara E. Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Vijaykumar Karuppiah
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Andrew Currin
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
29
|
van Rijn JPM, Escorcia AM, Thiel W. QM/MM study of the taxadiene synthase mechanism. J Comput Chem 2019; 40:1902-1910. [DOI: 10.1002/jcc.25846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
Affiliation(s)
| | - Andrés M. Escorcia
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim Germany
| | - Walter Thiel
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim Germany
| |
Collapse
|
30
|
Pahima E, Zhang Q, Tiefenbacher K, Major DT. Discovering Monoterpene Catalysis Inside Nanocapsules with Multiscale Modeling and Experiments. J Am Chem Soc 2019; 141:6234-6246. [PMID: 30907083 DOI: 10.1021/jacs.8b13411] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large-scale production of natural products, such as terpenes, presents a significant scientific and technological challenge. One promising approach to tackle this problem is chemical synthesis inside nanocapsules, although enzyme-like control of such chemistry has not yet been achieved. In order to better understand the complex chemistry inside nanocapsules, we design a multiscale nanoreactor simulation approach. The nanoreactor simulation protocol consists of hybrid quantum mechanics-molecular mechanics-based high temperature Langevin molecular dynamics simulations. Using this approach we model the tail-to-head formation of monoterpenes inside a resorcin[4]arene-based capsule (capsule I). We provide a rationale for the experimentally observed kinetics of monoterpene product formation and product distribution using capsule I, and we explain why additional stable monoterpenes, like camphene, are not observed. On the basis of the in-capsule I simulations, and mechanistic insights, we propose that feeding the capsule with pinene can yield camphene, and this proposal is verified experimentally. This suggests that the capsule may direct the dynamic reaction cascades by virtue of π-cation interactions.
Collapse
Affiliation(s)
- Efrat Pahima
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Qi Zhang
- Department of Chemistry , University of Basel , Mattenstrasse 24a , 4058 Basel , Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry , University of Basel , Mattenstrasse 24a , 4058 Basel , Switzerland.,Department of Biosystems Science and Engineering , ETH Zurich , Mattenstrasse 24 , 4058 Basel , Switzerland
| | - Dan T Major
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
31
|
Castiñeira Reis M, López CS, Nieto Faza O, Tantillo DJ. Pushing the limits of concertedness. A waltz of wandering carbocations. Chem Sci 2019; 10:2159-2170. [PMID: 30881640 PMCID: PMC6385557 DOI: 10.1039/c8sc03567a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Among the array of complex terpene-forming carbocation cyclization/rearrangement reactions, the so-called "triple shift" reactions are among the most unexpected. Such reactions involve the asynchronous combination of three 1,n-shifts into a concerted process, e.g., a 1,2-alkyl shift followed by a 1,3-hydride shift followed by a second 1,2-alkyl shift. This type of reaction so far has been proposed to occur during the biosynthesis of diterpenes and the sidechains of sterols. Here we describe efforts to push the limits of concertedness in this type of carbocation reaction by designing, and characterizing with quantum chemical computations, systems that could couple additional 1,n-shift events to a triple shift leading, in principle to quadruple, pentuple, etc. shifts. While our designs did not lead to clear-cut examples of quadruple, etc. shifts, they did lead to reactions with surprisingly flat energy surfaces where more than five chemical events connect reactants and plausible products. Ab initio molecular dynamics simulations demonstrate that the formal minima on these surfaces interchange on short timescales, both with each other and with additional unexpected structures, allowing us a glimpse into a very complex manifold that allows ready access to great structural diversity.
Collapse
Affiliation(s)
- Marta Castiñeira Reis
- Departamento de Química Orgánica , Universidade de Vigo , Lagoas-Marcosende , 36310 , Vigo , Spain
| | - Carlos Silva López
- Departamento de Química Orgánica , Universidade de Vigo , Lagoas-Marcosende , 36310 , Vigo , Spain
| | - Olalla Nieto Faza
- Departamento de Química Orgánica , Universidade de Vigo , As Lagoas , 32004 , Ourense , Spain .
| | - Dean J Tantillo
- Department of Chemistry , University of California , One Shields Ave , Davis , CA 95616 , USA .
| |
Collapse
|
32
|
Driller R, Janke S, Fuchs M, Warner E, Mhashal AR, Major DT, Christmann M, Brück T, Loll B. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nat Commun 2018; 9:3971. [PMID: 30266969 PMCID: PMC6162201 DOI: 10.1038/s41467-018-06325-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022] Open
Abstract
Terpenes constitute the largest and structurally most diverse natural product family. Most terpenoids exhibit a stereochemically complex macrocyclic core, which is generated by C–C bond forming of aliphatic oligo-prenyl precursors. This reaction is catalysed by terpene synthases (TPSs), which are capable of chaperoning highly reactive carbocation intermediates through an enzyme-specific reaction. Due to the instability of carbocation intermediates, the proteins’ structural dynamics and enzyme:substrate interactions during TPS catalysis remain elusive. Here, we present the structure of the diterpene synthase CotB2, in complex with an in crystallo cyclised abrupt reaction product and a substrate-derived diphosphate. We captured additional snapshots of the reaction to gain an overview of CotB2’s catalytic mechanism. To enhance insights into catalysis, structural information is augmented with multiscale molecular dynamic simulations. Our data represent fundamental TPS structure dynamics during catalysis, which ultimately enable rational engineering towards tailored terpene macrocycles that are inaccessible by conventional chemical synthesis. The bacterial diterpene synthase CotB2 catalyses the cyclisation of geranylgeranyl diphosphate to cyclooctat-9-en7-ol. Here the authors present various CotB2 structures including a trapped abrupt reaction product that were used for molecular dynamic simulations and allowed them to model all intermediates along the reaction cascade.
Collapse
Affiliation(s)
- Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Sophie Janke
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Evelyn Warner
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anil R Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Mathias Christmann
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| |
Collapse
|
33
|
Huynh F, Grundy DJ, Jenkins RL, Miller DJ, Allemann RK. Sesquiterpene Synthase-Catalysed Formation of a New Medium-Sized Cyclic Terpenoid Ether from Farnesyl Diphosphate Analogues. Chembiochem 2018; 19:1834-1838. [PMID: 29802753 PMCID: PMC6334173 DOI: 10.1002/cbic.201800218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 11/08/2022]
Abstract
Terpene synthases catalyse the first step in the conversion of prenyl diphosphates to terpenoids. They act as templates for their substrates to generate a reactive conformation, from which a Mg2+ -dependent reaction creates a carbocation-PPi ion pair that undergoes a series of rearrangements and (de)protonations to give the final terpene product. This tight conformational control was exploited for the (R)-germacrene A synthase- and germacradien-4-ol synthase-catalysed formation of a medium-sized cyclic terpenoid ether from substrates containing nucleophilic functional groups. Farnesyl diphosphate analogues with a 10,11-epoxide or an allylic alcohol were efficiently converted to a 11-membered cyclic terpenoid ether that was characterised by HRMS and NMR spectroscopic analyses. Further experiments showed that other sesquiterpene synthases, including aristolochene synthase, δ-cadinene synthase and amorphadiene synthase, yielded this novel terpenoid from the same substrate analogues. This work illustrates the potential of terpene synthases for the efficient generation of structurally and functionally novel medium-sized terpene ethers.
Collapse
Affiliation(s)
- Florence Huynh
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - Daniel J. Grundy
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - Robert L. Jenkins
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - David J. Miller
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
34
|
Li G, Garcia-Borràs M, Furst MJLJ, Ilie A, Fraaije MW, Houk KN, Reetz MT. Overriding Traditional Electronic Effects in Biocatalytic Baeyer-Villiger Reactions by Directed Evolution. J Am Chem Soc 2018; 140:10464-10472. [PMID: 30044629 PMCID: PMC6314816 DOI: 10.1021/jacs.8b04742] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlling the regioselectivity of Baeyer-Villiger (BV) reactions remains an ongoing issue in organic chemistry, be it by synthetic catalysts or enzymes of the type Baeyer-Villiger monooxygenases (BVMOs). Herein, we address the challenging problem of switching normal to abnormal BVMO regioselectivity by directed evolution using three linear ketones as substrates, which are not structurally biased toward abnormal reactivity. Upon applying iterative saturation mutagenesis at sites lining the binding pocket of the thermostable BVMO from Thermocrispum municipale DSM 44069 (TmCHMO) and using 4-phenyl-2-butanone as substrate, the regioselectivity was reversed from 99:1 (wild-type enzyme in favor of the normal product undergoing 2-phenylethyl migration) to 2:98 in favor of methyl migration when applying the best mutant. This also stands in stark contrast to the respective reaction using the synthetic reagent m-CPBA, which provides solely the normal product. Reversal of regioselectivity was also achieved in the BV reaction of two other linear ketones. Kinetic parameters and melting temperatures revealed that most of the evolved mutants retained catalytic activity, as well as thermostability. In order to shed light on the origin of switched regioselectivity in reactions of 4-phenyl-2-butanone and phenylacetone, extensive QM/MM and MD simulations were performed. It was found that the mutations introduced by directed evolution induce crucial changes in the conformation of the respective Criegee intermediates and transition states in the binding pocket of the enzyme. In mutants that destabilize the normally preferred migration transition state, a reversal of regioselectivity is observed. This conformational control of regioselectivity overrides electronic control, which normally causes preferential migration of the group that is best able to stabilize positive charge. The results can be expected to aid future protein engineering of BVMOs.
Collapse
Affiliation(s)
- Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agriproduct Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Maximilian J. L. J. Furst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Adriana Ilie
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Manfred T. Reetz
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
35
|
Blümel M, Nagasawa S, Blackford K, Hare SR, Tantillo DJ, Sarpong R. Rearrangement of Hydroxylated Pinene Derivatives to Fenchone-Type Frameworks: Computational Evidence for Dynamically-Controlled Selectivity. J Am Chem Soc 2018; 140:9291-9298. [DOI: 10.1021/jacs.8b05804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcus Blümel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shota Nagasawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katherine Blackford
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephanie R. Hare
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Rinkel J, Litzenburger M, Bernhardt R, Dickschat JS. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes. Chembiochem 2018; 19:1498-1501. [DOI: 10.1002/cbic.201800215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Martin Litzenburger
- Institute of BiochemistrySaarland University Campus Building B2.2 66123 Saarbrücken Germany
| | - Rita Bernhardt
- Institute of BiochemistrySaarland University Campus Building B2.2 66123 Saarbrücken Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
37
|
Ansbacher T, Freud Y, Major DT. Slow-Starter Enzymes: Role of Active-Site Architecture in the Catalytic Control of the Biosynthesis of Taxadiene by Taxadiene Synthase. Biochemistry 2018; 57:3773-3779. [DOI: 10.1021/acs.biochem.8b00452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamar Ansbacher
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
- Hadassah Academic College, 7 Hanevi’im Street, Jerusalem 9101001, Israel
| | - Yehoshua Freud
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
38
|
Yao J, Chen F, Guo H. QM/MM free energy simulations of the reaction catalysed by (4S)-limonene synthase involving linalyl diphosphate (LPP) substrate. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1447106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan , Jinan, P.R. China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee , Knoxville, TN, USA
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
39
|
Das S, Nam K, Major DT. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical–Molecular Mechanical Simulations of Proton Transfer in DNA. J Chem Theory Comput 2018; 14:1695-1705. [DOI: 10.1021/acs.jctc.7b00964] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Susanta Das
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Kwangho Nam
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
40
|
Freud Y, Ansbacher T, Major DT. Catalytic Control in the Facile Proton Transfer in Taxadiene Synthase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02824] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yehoshua Freud
- Department
of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tamar Ansbacher
- Department
of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
- Hadassah Academic College, 7 Hanevi’im
Street, Jerusalem 9101001, Israel
| | - Dan Thomas Major
- Department
of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
41
|
Dixit M, Weitman M, Gao J, Major DT. Comment on "Substrate Folding Modes in Trichodiene Synthase: A Determinant of Chemo- and Stereoselectivity". ACS Catal 2017; 8:1371-1375. [PMID: 29805842 DOI: 10.1021/acscatal.7b02823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wang et al. recently reported an in silico study of the trichodiene synthase (TDS) conversion of farnesyl diphosphate (FPP) to trichodiene (TD) (Wang et al., ACS Catal. 2017, 7, 5841-5846). Although the methods and level of theory used in that work are nearly identical to our own recent work on this system (Dixit et al., ACS Catal. 2017, 7, 812-818), Wang et al. reach rather different conclusions. The authors claimed to obtain a "very credible" mechanism for the biosynthesis of TD and optimized the optimal folding mode of FPP in the 1,6-ring closure in TDS. However, the folding mode of the FPP substrate that was presented contradicts well-established NMR and mass spectrometry data. Moreover, the authors make numerous incorrect statements regarding our earlier work.
Collapse
Affiliation(s)
- Mudit Dixit
- Department
of Chemistry and the Lise Meitner-Minerva Center of Computational
Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Michal Weitman
- Department
of Chemistry and the Lise Meitner-Minerva Center of Computational
Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Jiali Gao
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Theoretical
Chemistry Institute, Jilin University, Changchun 130023, P.R. China
| | - Dan T. Major
- Department
of Chemistry and the Lise Meitner-Minerva Center of Computational
Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|