1
|
Rani S, Ray AK, Dewangan DK, Patil NAR, Aarthika M, Paul A, Maity P. Phosphite mediated molecular editing via switch to meta-C-H alkylation of isoquinolines: emergence of a distinct photochemical [1,3] N to C rearrangement. Chem Sci 2025; 16:1809-1818. [PMID: 39720140 PMCID: PMC11664482 DOI: 10.1039/d4sc07127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
The isoquinoline core is present in one of the largest subsets of bioactive natural products. The multifunctional isoquinoline core exerts diverse bioactivity, resulting in the development of numerous isoquinoline-based drugs and molecules that are currently under clinical trials. We developed a new approach for phosphite-mediated [1,2] alkyl migration for an overall ortho-C-H alkylation via N-alkylation of isoquinoline. Tuning the phosphite-mediated protocol to switch the site selectivity would expedite direct and diverse multi-C-H bond functionalization. We report a new approach starting with a simple N-alkylation of isoquinoline with sterically and electronically diverse alkyl bromides for their phosphite-mediated photochemical [1,3] N to C rearrangement followed by a rearomatization sequence that leads to meta-C-H (C4) alkylation. Combined experimental and computational studies unveiled the emergence of an unprecedented C-N bond cleavage pathway from the singlet excited state of the enamine-type intermediate. Our radical bond-cleavage pathway favors substituted alkyl group migration that complements the recently successful meta-alkylation methods with smaller and more reactive electrophiles. This switch in site selectivity via tuning the phosphite-mediated protocol resulted in sequential C-H difunctionalization of isoquinoline including regiodivergent ortho, meta-dialkylations of isoquinolines.
Collapse
Affiliation(s)
- Soniya Rani
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL) Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Anuj Kumar Ray
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Devendra Kumar Dewangan
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL) Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | | | - M Aarthika
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL) Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Pradip Maity
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL) Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
2
|
Li S, Tang J, Shi Y, Yan M, Fu Y, Su Z, Xu J, Xue W, Zheng X, Ge Y, Li R, Chen H, Fu H. C3 Selective chalcogenation and fluorination of pyridine using classic Zincke imine intermediates. Nat Commun 2024; 15:7420. [PMID: 39198410 PMCID: PMC11358504 DOI: 10.1038/s41467-024-51452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Regioselective C-H functionalization of pyridines remains a persistent challenge due to their inherent electronically deficient properties. In this report, we present a strategy for the selective pyridine C3-H thiolation, selenylation, and fluorination under mild conditions via classic N-2,4-dinitrophenyl Zincke imine intermediates. Radical inhibition and trapping experiments, as well as DFT theoretical calculations, indicated that the thiolation and selenylation proceeds through a radical addition-elimination pathway, whereas fluorination via a two-electron electrophilic substitution pathway. The pre-installed electron-deficient activating N-DNP group plays a crucial and positive role, with the additional benefit of recyclability. The practicability of this protocol was demonstrated in the gram-scale synthesis and the late-stage modification of pharmaceutically relevant pyridines.
Collapse
Affiliation(s)
- Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yonglin Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Meixin Yan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, PR China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
3
|
Jia H, Tan Z, Zhang M. Reductive Functionalization of Pyridine-Fused N-Heteroarenes. Acc Chem Res 2024; 57:795-813. [PMID: 38394347 DOI: 10.1021/acs.accounts.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
ConspectusThe selective functionalization/transformation of ubiquitous pyridine-fused N-heteroarenes is a practical method to synthesize structurally novel N-heterocycles, which is important for the development of medicines, bioactive agents, agrochemicals, materials, ligands, sensors, pigments, dyes, etc. However, owing to thermodynamic stability, kinetic inertness, and lone electron pair-induced catalyst deactivation of the pyridine-fused N-heteroarenes, limited strategies (e.g., C-H activation/functionalization, electrophilic substitution, and the Minisci reaction) are available to realize the synthetic purpose and maintain the aromaticity of the final products. Moreover, the relevant transformations have limitations such as needing harsh reaction conditions, requiring the preinstallation of specific coupling agents containing transformable functionalities or directing groups, using less environmentally benign oxidants and/or acidic activators, and poor selectivity. Herein, considering that imines, enamines, radicals, and cyclic amines are generated during the reduction of pyridine-fused N-heteroarenes, the precise transformation of these reductive intermediates offers a fundamental basis for developing novel tandem reactions. Our group revealed that a slow reduction rate, synergistic catalysis, and controlled electroreduction are effective strategies for fulfilling the selective reductive functionalization of pyridine-fused N-heteroarenes. Thus, we established a series of new synthetic methods that provide diverse construction modalities for functionalized N-heterocycles. The striking features of these synthetic methods include high efficiency, atom economy, and the use of readily accessible N-heteroarenes as transformable feedstocks in the absence of flammable and pressurized H2 gas, alongside a promising potential of the obtained N-heterocyclic products. The present study would be appealing to the fields of synthetic organic chemistry, catalysis, biomedical chemistry, and functional materials. This Account describes the application of reductive dearomatization as substrate-activating and tandem reaction-initiating modes and summarizes the reductive functionalization of pyridine-fused N-heteroarenes via selective alkylation, arylation, and annulation at nitrogen, α, β, and other remote carbon sites achieved over the past 8 years. Details regarding the development of new reactions and their plausible mechanisms and perspectives are discussed. We hope our contributions to this field will aid in the further development of novel strategies for the functionalization/transformation of pyridine-fused N-heteroarenes and tackle the intractable challenges in this area.
Collapse
Affiliation(s)
- Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Wang Z, Hu R, Wang L, Zhou S. Enhanced Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Silica-Coated Pt-Co xO y Hybrid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:924-932. [PMID: 38145368 DOI: 10.1021/acsami.3c16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) is difficult due to the intrinsic difficulty with thermodynamically easier hydrogenation of C═C bonds. In this work, Pt-CoxOy hybrid nanoparticles encapsulated in mesoporous silica nanospheres (Pt-CoxOy@mSiO2) were synthesized by a sol-gel method, which showed greatly improved COL selectivity for hydrogenation of CAL. At 80 °C and 1.0 MPa of H2, Pt-CoxOy@mSiO2 achieved a CAL conversion of 98.7% with a COL selectivity of 93.5%. In contrast, Pt@mSiO2 yields 3-phenylpropanol (HCOL) as the major product with HCOL selectivity of 67.2%, while PtCo@mSiO2 yields 3-phenylpropionaldehyde with selectivity of 51.8% under the same conditions. The enhanced catalytic performance of Pt-CoxOy@mSiO2 for hydrogenation of CAL to COL is ascribed to the Pt surface electron deficiency induced by metal-oxide interaction, and the protection of active NPs by silica shells results in good catalytic stability.
Collapse
Affiliation(s)
- Zizhu Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ru Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lei Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shenghu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Wang M, Zhang M. Diastereoselective construction of carbo-bridged polyheterocycles by a three-component tandem annulation reaction. Org Biomol Chem 2023; 21:6342-6347. [PMID: 37497637 DOI: 10.1039/d3ob01013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
By a hydroamination-induced tandem annulation process, we herein report a new three-component reaction for room temperature construction of carbo-bridged polyheterocycles with exclusive diastereoselectivity, which features readily available feedstocks, catalyst-free conditions, good substrate and functionality compatibility, no need for transition metal catalysts, and high step and atom efficiency. The products are formed via initial formation of 1,2-dihydro-3H-pyrazol-3-one nucleophiles from but-2-ynedioates and hydrazine followed by 2,4-difunctionalization of N-heteroarenium salts. Given that the obtained products possess structurally important tetrahydroquinoline and pyranopyrazole motifs, the developed chemistry is anticipated to be further applied to the discovery of functional molecules including biomedical ones.
Collapse
Affiliation(s)
- Maorui Wang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
7
|
Zhang B, Li J, Zhu H, Xia XF, Wang D. Novel Recyclable Catalysts for Selective Synthesis of Substituted Perimidines and Aminopyrimidines. Catal Letters 2022. [DOI: 10.1007/s10562-022-04153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Pan J, Li J, Xia XF, Zeng W, Wang D. High Active Palladium Composite and Catalytic Applications on the Synthesis of Substituted Aminopyridine Derivatives Through Borrowing Hydrogen Strategy. Catal Letters 2022. [DOI: 10.1007/s10562-022-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Xu S, Cai Z, Liao C, Shi J, Wen T, Xie F, Zhu Z, Chen X. Nitrogen-Doped Carbon Supported Nanocobalt Catalyst for Hydrogen-Transfer Dearomative Coupling of Quinolinium Salts and Tetrahydroquinolines. Org Lett 2022; 24:5209-5213. [PMID: 35833649 DOI: 10.1021/acs.orglett.2c02057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A nitrogen-doped carbon supported nanocobalt catalyst was developed and successfully applied for the hydrogen-transfer coupling of quinolinium salts and tetrahydroquinoline compounds. The selective coupling of the C6 sites of tetrahydroquinolines (THQs) with the α sites of quinoline salts generated a series of 2-substituted N-alkyl-tetrahydroquinolines. This catalytic conversion method, which can be employed to synthesize various functionalized tetrahydroquinolines, has several advantages that include excellent hydrogen transfer selectivity, a reusable and inexpensive catalyst, and environmental friendliness.
Collapse
Affiliation(s)
- Shengting Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zechun Cai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chuyi Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jianyi Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Tingting Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
10
|
Zhao H, Wu Y, Ci C, Tan Z, Yang J, Jiang H, Dixneuf PH, Zhang M. Intermolecular diastereoselective annulation of azaarenes into fused N-heterocycles by Ru(II) reductive catalysis. Nat Commun 2022; 13:2393. [PMID: 35501354 PMCID: PMC9061824 DOI: 10.1038/s41467-022-29985-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Derivatization of azaarenes can create molecules of biological importance, but reductive functionalization of weakly reactive azaarenes remains a challenge. Here the authors show a dearomative, diastereoselective annulation of azaarenes, via ruthenium(II) reductive catalysis, proceeding with excellent selectivity, mild conditions, and broad substrate and functional group compatibility. Mechanistic studies reveal that the products are formed via hydride transfer-initiated β-aminomethylation and α-arylation of the pyridyl core in the azaarenes, and that paraformaldehyde serves as both the C1-building block and reductant precursor, and the use of Mg(OMe)2 base plays a critical role in determining the reaction chemo-selectivity by lowering the hydrogen transfer rate. The present work opens a door to further develop valuable reductive functionalization of unsaturated systems by taking profit of formaldehyde-endowed two functions.
Collapse
Affiliation(s)
- He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yang Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chenggang Ci
- Key Laboratory of Computational Catalytic Chemistry of Guizhou Province, Department of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Pierre H Dixneuf
- University of Rennes, ISCR, UMR CNRS 6226, 35000, Rennes, France
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
11
|
Guan R, Zhao H, Zhang M. Construction of Fused Tetrahydroquinolines by Catalytic Hydride-Transfer-Initiated Tandem Functionalization of Quinolines. Org Lett 2022; 24:3048-3052. [DOI: 10.1021/acs.orglett.2c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rongqing Guan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
- Qingyuan Huayuan Institute of Science and Technology Collaborative InnovationCo., Ltd., China
| |
Collapse
|
12
|
Mao W, Zhao H, Zhang M. Hydride transfer-initiated synthesis of 3-functionalized quinolines by deconstruction of isoquinoline derivatives. Chem Commun (Camb) 2022; 58:4380-4383. [PMID: 35297459 DOI: 10.1039/d2cc00127f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Under transition metal catalyst-free conditions, we herein present a hydride transfer-initiated construction of novel 3-(2-aminomethyl)aryl quinolines from N-isoquinolinium salts and 2-aminobenzaldehydes, proceeding with the merits of operational simplicity, high step and atom efficiency, good substrate and functional group compatibility, and mild conditions. The products are formed by reacting with the isoquinolyl motif as a two-carbon synthon along with the cleavage of its C3-N bond. Given the interesting applications of 3-aryl quinolines, the developed chemistry is anticipated to be further applied to develop new functional products.
Collapse
Affiliation(s)
- Wenhui Mao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
13
|
Nitrogen-doped Carbon Supported Nanocobalt for the Synthesis of Functionalized Triazines via Oxidative Cleavage of Biomass Derived vicinal Diols as Carbon Synthons. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Duan P, Zhao H, Yang J, Cao L, Jiang H, Zhang M. Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Org Lett 2022; 24:608-612. [PMID: 34989577 DOI: 10.1021/acs.orglett.1c04048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Via difunctionalization of the α- and β-sites of cyclic ethers, we herein demonstrate a new synthetic method for the efficient construction of novel fluorinated γ-amino acid esters by employing a CoBr2/m-CPBA catalyst system. Several cyclic ethers were transformed in combination with a vast range of amines and ethyl trifluoropyruvate into the desired products under mild conditions, making this method a practical platform to enrich the library of fluorinated amino acid derivatives from cost-effective and readily available feedstocks.
Collapse
Affiliation(s)
- Peng Duan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| |
Collapse
|
15
|
Xie R, Mao W, Jia H, Lu G, Sun J, Jiang H, Zhao H, Zhang M. Synthesis of acridinones via palladium-catalyzed reductive annulation of 2-nitrobenzaldehydes and resorcinols. Org Chem Front 2022. [DOI: 10.1039/d1qo01693h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through a palladium-catalyzed reductive annulation reaction of resorcinols and 2-nitrobenzaldehydes, reported is a new synthesis of acridinones with the features of operational simplicity, broad substrate scope, and readily available feedstocks.
Collapse
Affiliation(s)
- Rong Xie
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Wenhui Mao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Guangpeng Lu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Jialu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
- Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd., China
| |
Collapse
|
16
|
Chang S, Liu H, Shi G, Xia XF, Wang D, Duan ZC. Copper–cobalt coordination polymers and catalytic applications on borrowing hydrogen reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous copper–cobalt polymer was synthesized and achieved applications for the N-alkylation of sulfonamides with alcohols, and carboxamides with alcohols.
Collapse
Affiliation(s)
- Shaoze Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqiang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- China Synchem Technology Co., Ltd., Bengbu, Anhui, 233000, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
17
|
Lin S, Sheng X, Zhang X, Liu H, Luo C, Hou S, Li B, Chen X, Li Y, Xie F. Layered Double Hydroxides as Reusable Catalysts for Cyclocondensation of Amidines and Aminoalcohols: Access to Multi-functionalized Oxazolines. J Org Chem 2021; 87:1366-1376. [PMID: 34964647 DOI: 10.1021/acs.joc.1c02696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient catalytic protocol based on reusable MgAl-layered double hydroxides has been developed for the synthesis of multi-functionalized oxazolines via the cyclocondensation of amidines and aminoalcohols. The developed method has a broad substrate scope and excellent functional group tolerance and uses a reusable catalyst. The catalyst can be conveniently recycled by filtration and reused for at least five times without obvious deactivation. Additionally, the selective ortho C-H silylation of oxazolines was performed using Ru(II) as the catalyst and triethyl silane as the silylating reagent, which proved to be a convenient and practical method for the synthesis of versatile organosilyl-functionalized oxazolines with advantageous biological and physical properties.
Collapse
Affiliation(s)
- Shizhuo Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xing Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiangyu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Haibo Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chujun Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Shuaishuai Hou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
18
|
Xie R, Mao W, Jia H, Sun J, Lu G, Jiang H, Zhang M. Reductive electrophilic C-H alkylation of quinolines by a reusable iridium nanocatalyst. Chem Sci 2021; 12:13802-13808. [PMID: 34760165 PMCID: PMC8549771 DOI: 10.1039/d1sc02967c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
The incorporation of a coupling step into the reduction of unsaturated systems offers a desirable way for diverse synthesis of functional molecules, but it remains to date a challenge due to the difficulty in controlling the chemoselectivity. Herein, by developing a new heterogeneous iridium catalyst composed of Ir-species (Irδ+) and N-doped SiO2/TiO2 support (Ir/N-SiO2/TiO2), we describe its application in reductive electrophilic mono and dialkylations of quinolines with various 2- or 4-functionalized aryl carbonyls or benzyl alcohols by utilizing renewable formic acid as the reductant. This catalytic transformation offers a practical platform for direct access to a vast range of alkyl THQs, proceeding with excellent step and atom-efficiency, good substrate scope and functional group tolerance, a reusable catalyst and abundantly available feedstocks, and generation of water and carbon dioxide as by-products. The work opens a door to further develop more useful organic transformations under heterogeneous reductive catalysis. By developing a heterogeneous iridium catalyst composed of a N-doped SiO2/TiO2 support and Ir-species (Ir/N-SiO2/TiO2), its application in reductive electrophilic alkylation of quinolines with various aryl carbonyls or benzyl alcohols is presented.![]()
Collapse
Affiliation(s)
- Rong Xie
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Wenhui Mao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Jialu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Guangpeng Lu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| |
Collapse
|
19
|
Su J, Su H, Chen J, Li X. Semiconductor‐based nanocomposites for selective organic synthesis. NANO SELECT 2021. [DOI: 10.1002/nano.202100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Juan Su
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Hui Su
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Xin‐Hao Li
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
20
|
Zhu G, Zhao J, Duan T, Wang L, Wang D. Unsymmetrical Pyrazoly‐Pyridinyl‐Triazole Promoted High Active Copper Composites on Mesoporous Materials and Catalytic Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guanxin Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Jiaxin Zhao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
- The Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering China Three Gorges University Yichang 443002 P. R. China
| | - Tianbo Duan
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Long Wang
- The Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering China Three Gorges University Yichang 443002 P. R. China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
21
|
Yang J, Zhao H, Tan Z, Cao L, Jiang H, Ci C, Dixneuf PH, Zhang M. syn-Selective Construction of Fused Heterocycles by Catalytic Reductive Tandem Functionalization of N-Heteroarenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chenggang Ci
- Key Laboratory of Computational Catalytic Chemistry of Guizhou Province, Department of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, P. R. China
| | | | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
22
|
Zhang MJ, Ge XL, Young DJ, Li HX. Recent advances in Co-catalyzed C–C and C–N bond formation via ADC and ATH reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Xie F, Chen X, Zhang X, Luo C, Lin S, Chen X, Li B, Li Y, Zhang M. OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Zhu G, Duan ZC, Zhu H, Qi M, Wang D. Iridium and copper supported on silicon dioxide as chemoselective catalysts for dehydrogenation and borrowing hydrogen reactions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Zhang X, Luo C, Chen X, Ma W, Li B, Lin Z, Chen X, Li Y, Xie F. Direct synthesis of quinazolinones via the carbon-supported acid-catalyzed cascade reaction of isatoic anhydrides with amides and aldehydes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Cao F, Duan ZC, Zhu H, Wang D. Deoxygenative coupling of 2-aryl-ethanols catalyzed by unsymmetrical pyrazolyl-pyridinyl-triazole ruthenium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Cao F, Mao A, Yang B, Ge C, Wang D. The preparation of a Co@C 3N 4 catalyst and applications in the synthesis of quinolines from 2-aminobenzyl alcohols with ketones. NEW J CHEM 2021. [DOI: 10.1039/d0nj05767c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Co@C3N4 composite was synthesized through Co-doping of C3N4 and revealed high catalytic activity for the synthesis of quinolines.
Collapse
Affiliation(s)
- Fei Cao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Anruo Mao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Bobin Yang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Chenyang Ge
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
28
|
Guan R, Zhao H, Cao L, Jiang H, Zhang M. Ruthenium/acid co-catalyzed reductive α-phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides. Org Chem Front 2021. [DOI: 10.1039/d0qo01284j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
By an in situ coupling-interrupted transfer hydrogenation strategy, a direct construction of novel α-phosphinoyl 1,2,3,4-tetrahydronaphthyridines via ruthenium/acid co-catalyzed reductive α-phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides is demonstrated.
Collapse
Affiliation(s)
- Rongqing Guan
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
29
|
Tian AQ, Luo XH, Ren ZL, Zhao J, Wang L. The synthesis and structure of an amazing and stable carbonized material Cu-PC@OFM and its catalytic applications in water with mechanism explorations. NEW J CHEM 2021. [DOI: 10.1039/d1nj00861g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An amazing and stable carbonized octahedral frame material Cu-PC@OFM was synthesized and characterized through HRTEM, SEM, XRD, XPS, and Raman spectroscopy and nitrogen adsorption/desorption analysis.
Collapse
Affiliation(s)
- An-Qi Tian
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Xiang-Hao Luo
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Zhi-Lin Ren
- College of Chemical Engineering
- Hubei University of Arts and Science
- Xiangyang
- China
| | - Jun Zhao
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| |
Collapse
|
30
|
He Q, Xie F, Xia C, Liang W, Guo Z, Zhu Z, Li Y, Chen X. Copper-Catalyzed Selective 1,2-Difunctionalization of N-Heteroaromatics through Cascade C-N/C═C/C═O Bond Formation. Org Lett 2020; 22:7976-7980. [PMID: 32997943 DOI: 10.1021/acs.orglett.0c02910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents an efficient strategy for constructing 1,2-difunctionalized quinoline derivatives via the multicomponent cascade coupling of N-heteroaromatics with alkyl halides and different terminal alkynes. This reaction was achieved through sequential functionalization at the one- and two-positions of quinolines, which displayed a broad substrate scope, environmental friendliness, excellent functional group tolerance, high atom efficiency, and chemoselectivity. The multicomponent coupling involved the abnormal construction of new C-N, C═C, and C═O bonds in one pot. The applicability of this method was further demonstrated by the late-stage functionalization of complex drug molecules under the established conditions.
Collapse
Affiliation(s)
- Qianlin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chuanjiang Xia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wanyi Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ziyin Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
31
|
Grozavu A, Hepburn HB, Bailey EP, Lindsay-Scott PJ, Donohoe TJ. Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chem Sci 2020; 11:8595-8599. [PMID: 34123119 PMCID: PMC8163342 DOI: 10.1039/d0sc02759f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pyridines are ubiquitous aromatic rings used in organic chemistry and are crucial elements of the drug discovery process. Herein we describe a new catalytic method that directly introduces a methyl group onto the aromatic ring; this new reaction is related to hydrogen borrowing, and is notable for its use of the feedstock chemicals methanol and formaldehyde as the key reagents. Conceptually, the C-3/5 methylation of pyridines was accomplished by exploiting the interface between aromatic and non-aromatic compounds, and this allows an oscillating reactivity pattern to emerge whereby normally electrophilic aromatic compounds become nucleophilic in the reaction after activation by reduction. Thus, a set of C-4 functionalised pyridines can be mono or doubly methylated at the C-3/5 positions. Electron poor pyridines can be activated by reduction and then methylated at C3/5 using formaldehyde.![]()
Collapse
Affiliation(s)
- Alexandru Grozavu
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Hamish B Hepburn
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Elliot P Bailey
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | | | - Timothy J Donohoe
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
32
|
Cao L, Zhao H, Tan Z, Guan R, Jiang H, Zhang M. Ruthenium-Catalyzed Hydrogen Evolution o-Aminoalkylation of Phenols with Cyclic Amines. Org Lett 2020; 22:4781-4785. [PMID: 32493014 DOI: 10.1021/acs.orglett.0c01580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present a ruthenium-catalyzed new hydrogen evolution ortho-aminoalkylation of phenolic derivatives with cyclic amines as the coupling agents. The developed cross-coupling reaction offers a practical platform for direct access to a variety of functionalized phenols with the features of good substrate and functional group compatibility, readily available catalyst system and feedstocks, no need for additional sacrificial oxidants, and high atom efficiency.
Collapse
Affiliation(s)
- Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Rongqing Guan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China
| |
Collapse
|
33
|
Tan Z, Fu Z, Yang J, Wu Y, Cao L, Jiang H, Li J, Zhang M. Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst. iScience 2020; 23:101003. [PMID: 32278286 PMCID: PMC7150509 DOI: 10.1016/j.isci.2020.101003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Selective linkage of renewable alcohols and ammonia into functional products would not only eliminate the prepreparation steps to generate active amino agents but also help in the conservation of our finite fossil carbon resources and contribute to the reduction of CO2 emission. Herein the development of a novel 2-(4-methoxyphenyl)-1,8-naphthyridine-based iridium (III) complex is reported, which exhibits excellent catalytic performance toward a new hydrogen transfer-mediated annulation reaction of 2-nitrobenzylic alcohols with alcohols and ammonia. The catalytic transformation proceeds with the striking features of good substrate and functional group compatibility, high step and atom efficiency, no need for additional reductants, and liberation of H2O as the sole by-product, which endows a new platform for direct access to valuable quinazolines. Mechanistic investigations suggest that the non-coordinated N-atom in the ligand serves as a side arm to significantly promote the condensation process by hydrogen bonding.
Collapse
Affiliation(s)
- Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhongxin Fu
- Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou, Guangdong 510632, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yang Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Juan Li
- Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou, Guangdong 510632, P. R. China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Xie R, Lu GP, Jiang HF, Zhang M. Selective reductive annulation reaction for direct synthesis of functionalized quinolines by a cobalt nanocatalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Yao W, Zhang Y, Zhu H, Ge C, Wang D. The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C N bond formation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Lu G, Xie F, Xie R, Jiang H, Zhang M. Iridium/Acid Cocatalyzed Direct Access to Fused Indoles via Transfer Hydrogenative Annulation of Quinolines and 1,2-Diketones. Org Lett 2020; 22:2308-2312. [DOI: 10.1021/acs.orglett.0c00500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangpeng Lu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Rong Xie
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
37
|
Sang X, Hu X, Tao R, Zhang Y, Zhu H, Wang D. A Zirconium Indazole Carboxylate Coordination Polymer as an Efficient Catalyst for Dehydrogenation‐Cyclization and Oxidative Coupling Reactions. Chempluschem 2020. [DOI: 10.1002/cplu.201900349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinxin Sang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Xinyu Hu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Rong Tao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Yilin Zhang
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia 26506-6045 United States
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| |
Collapse
|
38
|
Leng Y, Du S, Feng G, Sang X, Jiang P, Li H, Wang D. Cobalt-Polypyrrole/Melamine-Derived Co-N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:474-483. [PMID: 31802662 DOI: 10.1021/acsami.9b14839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is highly desired but remains a great challenge to develop non-noble metal heterogeneous catalysts to supersede noble metal catalysts for formic acid (FA) dehydrogenation and the corresponding transfer hydrogenation reactions. Herein, we developed a simple and feasible melamine-assisted pyrolysis strategy for the preparation of atomic cobalt-nitrogen (Co-N)-anchored mesoporous carbon with high metal loading (>6.8 wt %) and high specific surface area (750 m2 g-1). Systematic investigation reveals that both the organic carbon source polypyrrole and the nitrogen source melamine are crucial for the successful generation of such Co-N-based materials. The obtained samples (Co-N)n@NC were demonstrated to be highly efficient and robust catalysts for FA dehydrogenation and formylation of quinolines through transfer hydrogenation, exhibiting a very high hydrogen production rate of 16 451 mL·gCo-1·h-1 for FA dehydrogenation and affording excellent yields (up to 99%), selectivity (up to 98%), and stability for transfer hydrogenation. This work may provide a promising route for the fabrication of more low-cost metal-nitrogen catalysts for green fine chemical synthesis.
Collapse
Affiliation(s)
- Yan Leng
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Shengyu Du
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Guodong Feng
- Key Lab of Advanced Molecular Engineering Materials , Baoji University of Arts and Science , Baoji 721013 , China
| | - Xinxin Sang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Pingping Jiang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Hui Li
- School of Pharmaceutical Science , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Dawei Wang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
39
|
Xie F, Li Y, Chen X, Chen L, Zhu Z, Li B, Huang Y, Zhang K, Zhang M. Direct synthesis of novel quinoxaline derivatives via palladium-catalyzed reductive annulation of catechols and nitroarylamines. Chem Commun (Camb) 2020; 56:5997-6000. [DOI: 10.1039/c9cc09649c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A palladium-catalyzed new hydrogenative annulation reaction of catechols and nitroarylamines, allowing straightforward access to two classes of novel quinoxaline derivatives, has been demonstrated.
Collapse
Affiliation(s)
- Feng Xie
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Yibiao Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Lu Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Bin Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Yubing Huang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Kun Zhang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Min Zhang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
- South China University of Technology
| |
Collapse
|
40
|
Li X, Zhao H, Chen X, Jiang H, Zhang M. Copper-catalysed oxidative α-C(sp3)–H nitroalkylation of (hetero)arene-fused cyclic amines. Org Chem Front 2020. [DOI: 10.1039/c9qo01208g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Under aerobic copper catalysis, a direct α-C(sp3)–H nitroalkylation of N-unsubstituted (hetero)arene-fused cyclic amines with nitroalkanes has been demonstrated.
Collapse
Affiliation(s)
- Xiu Li
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiuwen Chen
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
41
|
Yao W, Ge C, Zhang Y, Xia XF, Wang L, Wang D. Retracted: Synthesis of 2-Arylisoindoline Derivatives Catalyzed by Reusable 1,2,4-Triazole Iridium on Mesoporous Silica through a Cascade Borrowing Hydrogen Strategy. Chemistry 2019; 25:16099-16105. [PMID: 31588599 DOI: 10.1002/chem.201904095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 01/24/2023]
Abstract
Covalent attachment of a 1,2,4-triazole iridium complex to mesoporous MCM-41 generated a heterogeneous catalyst that was found to be effective in the synthesis of 2-aryl isoindolines, quinolines, cyclic amines, and symmetrical secondary amines through a cascade borrowing hydrogen strategy. Interestingly, the supported heterogeneous iridium catalyst prepared from the 1,2,4-triazole iridium complex and mesoporous MCM-41 exhibited high catalytic activity in the preparation of 2-aryl isoindoline derivatives and symmetrical secondary amines. The catalyst system is highly recyclable for at least five times. Besides the important effect of the triazole, iridium sites grafted on siliceous supports can act as multifunctional catalytic centers and thus greatly enhance the catalytic activity of the catalysts. Furthermore, mechanistic experiments revealed that the reaction is initiated by an initial alcohol dehydrogenation and promoted by an iridium hydride intermediate. Importantly, the direct detection of a diagnostic iridium hydride signal confirmed that the synthesis of 2-aryl isoindolines occurs by a borrowing hydrogen process. This work provides an efficient example of isoindolines synthesis through a borrowing hydrogen strategy.
Collapse
Affiliation(s)
- Wei Yao
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chenyang Ge
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Yilin Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West, Virginia, 26506, USA
| | - Xiao-Feng Xia
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Dawei Wang
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
42
|
Chen J, Liang T, Zhao H, Lin C, Chen L, Zhang M. Silver-mediated three-component cycloaddition reaction for direct synthesis of 1-N-vinyl-substituted 1,2,3-triazoles. Org Biomol Chem 2019; 17:4843-4849. [PMID: 31033976 DOI: 10.1039/c9ob00686a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report direct synthesis of 1-N-vinyl-1,2,3-triazoles via silver-mediated three-component cycloaddition reaction of phenylacetylenes, trimethylsilylazide, and 1,3-dicarbonyl compounds. The synthetic protocol proceeds with operational simplicity, good substrate and functional group compatibility, and easily available feedstocks, and without the need for pre-installation of vinylazide precursors, and offers a practical method for the efficient elaboration of triazole derivatives.
Collapse
Affiliation(s)
- Jinpeng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Rd, Guangzhou 510640, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
43
|
Chen X, Yang Z, Chen X, Liang W, Zhu Z, Xie F, Li Y. Hydrogen-Transfer-Mediated N-Arylation of Naphthols Using Indolines as Hydrogen Donors. J Org Chem 2019; 85:508-514. [DOI: 10.1021/acs.joc.9b02558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhihai Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xuyan Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wanyi Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
44
|
Yao W, Duan Z, Zhang Y, Sang X, Xia X, Wang D. Iridium Supported on Phosphorus‐Doped Porous Organic Polymers: Active and Recyclable Catalyst for Acceptorless Dehydrogenation and Borrowing Hydrogen Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Zheng‐Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
- School of Chemical and Environmental EngineeringHubei Minzu University Enshi 445000 People's Republic of China
| | - Yilin Zhang
- C. Eugene Bennett Department of ChemistryWest Virginia University Morgantown, West Virginia 26506 USA
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Xiao‐Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| |
Collapse
|
45
|
Xie R, Xie F, Zhou CJ, Jiang HF, Zhang M. Hydrogen transfer-mediated selective dual C–H alkylations of 2-alkylquinolines by doped TiO2-supported nanocobalt oxides. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Mishra K, Lee YR. Highly synergistic effect of bifunctional Ru-rGO catalyst for enhanced hydrogenative-reductive benzylation of N-heteroaromatics. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Liang Y, Tan Z, Jiang H, Zhu Z, Zhang M. Copper-Catalyzed Oxidative Multicomponent Annulation Reaction for Direct Synthesis of Quinazolinones via an Imine-Protection Strategy. Org Lett 2019; 21:4725-4728. [PMID: 31184195 DOI: 10.1021/acs.orglett.9b01608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Via an imine-protection strategy, we herein present an unprecedented copper-catalyzed oxidative multicomponent annulation reaction for direct synthesis of quinazolinones. The construction of various products is achieved via formation of three C-N and one C-C bonds in conjunction with the benzylic functionalization. The merits of easily available feedstocks, naturally abundant catalyst, good functional group and substrate compatibility, and release of H2O as the byproduct make the developed chemistry a practical way to access quinazolinones.
Collapse
Affiliation(s)
- Yantang Liang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Zhibo Zhu
- Integrated Hospital of Traditional Chinese Medicine , Southern Medical University , 13# Shiliugang Road, Haizhu district , Guangzhou 510315 , China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| |
Collapse
|
48
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
49
|
Liang T, Zhao H, Gong L, Jiang H, Zhang M. Synthesis of Multisubstituted Benzimidazolones via Copper-Catalyzed Oxidative Tandem C-H Aminations and Alkyl Deconstructive Carbofunctionalization. iScience 2019; 15:127-135. [PMID: 31048147 PMCID: PMC6496510 DOI: 10.1016/j.isci.2019.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 01/25/2023] Open
Abstract
Benzimidazolone constitutes the core structure of numerous pharmaceuticals, agrochemicals, inhibitors, pigments, herbicides, and fine chemicals. Amination of hydrocarbons is an attractive tool for the creation of nitrogen-containing products. However, the multiple steps, harsh conditions, and low atom efficiencies often present in these reactions remain challenging. We present a multicomponent synthesis of functional benzimidazolones from arylamines, dialkylamines, and alcohols, acting via the sequence of copper-catalyzed oxidative tandem C-H aminations and alkyl deconstructive carbofunctionalization. The catalytic transformation forms multiple bonds in one single operation, uses readily available feedstocks and a naturally abundant Cu/O2 catalyst system, has broad substrate scope, avoids pre-installation of aminating agents and directing groups, and provides high chemo- and regioselectivity, resulting in direct functionalization of inert C-H and C-C bonds via single-electron oxidation-induced activation mode. This platform can be expected to provide structurally diverse products with interesting biological, chemical, and physical properties.
Collapse
Affiliation(s)
- Taoyuan Liang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Lingzhen Gong
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
50
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|