1
|
Jiang X, Sun Y, Li R, Chen D, Yao Y, Zeng Z, Yang C, Chen H, Chang H, Shan Y, D'Agostino C, Jiang J. Cu-EAB zeolite catalyst: A promising candidate with excellent SO 2 poisoning resistance for NH 3-SCR reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137048. [PMID: 39813922 DOI: 10.1016/j.jhazmat.2024.137048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025]
Abstract
In this work, we synthesized Cux-EAB catalysts with an EAB topology for the NH3-SCR of NOx and evaluated their resistance to SO2 poisoning for the first time. The Cu2.53-EAB catalyst showed superior NOx conversion and selectivity for N2, along with a notable tolerance to high space velocities and SO2, outperforming the commercial Cu2.61-CHA catalyst. This enhanced resistance was attributed to the Cu2 + species formation at the 2.53 wt% loading, which were mainly located in the double 6-rings and 8-rings of the Cu2.53-EAB structure. The catalyst performance was stable even after SO2 exposure and multiple NH3-SCR cycles. Sulfation treatments at both 200 °C and 400 °C reduced the NOx conversion rates of the Cu2.53-EAB and Cu2.61-CHA catalysts. Comparative characterizations before and after sulfation revealed that the NH3-SCR activity of Cu2.53-EAB was less affected by the sulfation treatment at 400 °C. The coverage of active sites by H2SO4 and CuSO4 was identified as the primary cause of activity reduction for both catalysts after sulfation at 200 °C and 400 °C. A hybrid Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanism for the NH3-SCR reaction over Cu2.53-EAB was proposed, based on in situ DRIFTS analysis. The results show that the Cu-EAB catalyst is a promising alternative for NH3-SCR applications, offering improved SO2 resistance and NOx elimination capabilities.
Collapse
Affiliation(s)
- Xiangqiong Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Li
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
| | - Dongdong Chen
- School of Environmental and Chemical Engineering, Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| | - Yuyan Yao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhifeng Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Can Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongwei Chen
- College of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongzheng Chang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Carmine D'Agostino
- Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, UK; Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna, Via Terracini, 28, Bologna 40131, Italy
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zhang Y, Du J, Shan Y, Wang F, Liu J, Wang M, Liu Z, Yan Y, Xu G, He G, Shi X, Lian Z, Yu Y, Shan W, He H. Toward synergetic reduction of pollutant and greenhouse gas emissions from vehicles: a catalysis perspective. Chem Soc Rev 2025; 54:1151-1215. [PMID: 39687940 DOI: 10.1039/d4cs00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
It is a great challenge for vehicles to satisfy the increasingly stringent emission regulations for pollutants and greenhouse gases. Throughout the history of the development of vehicle emission control technology, catalysts have always been in the core position of vehicle aftertreatment. Aiming to address the significant demand for synergistic control of pollutants and greenhouse gases from vehicles, this review provides a panoramic view of emission control technologies and key aftertreatment catalysts for vehicles using fossil fuels (gasoline, diesel, and natural gas) and carbon-neutral fuels (hydrogen, ammonia, and green alcohols). Special attention will be given to the research advancements in catalysts, including three-way catalysts (TWCs), NOx selective catalytic reduction (SCR) catalysts, NOx storage-reduction (NSR) catalysts, diesel oxidation catalysts (DOCs), soot oxidation catalysts, ammonia slip catalysts (ASCs), methane oxidation catalysts (MOCs), N2O abatement catalysts (DeN2O), passive NOx adsorbers (PNAs), and cold start catalysts (CSCs). The main challenges for industrial applications of these catalysts, such as insufficient low-temperature activity, product selectivity, hydrothermal stability, and poisoning resistance, will be examined. In addition, the future development of synergistic control of vehicle pollutants and greenhouse gases will be discussed from a catalysis perspective.
Collapse
Affiliation(s)
- Yan Zhang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Jinpeng Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yulong Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingjing Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Meng Wang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Zhi Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangzhi He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaoyan Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhihua Lian
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Wenpo Shan
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Hong He
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Lin J, Hu X, Tan X, Zhang Y, Lin C, Shan W, He H. Facile Synthesis of Cu-Exchanged Zeolite Catalysts with Only Cu 2+-2Z Species: Enhancing Hydrothermal Stability and Sulfur Resistance for NH 3-SCR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1864-1874. [PMID: 39698850 DOI: 10.1021/acs.est.4c09820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
For Cu-exchanged zeolite catalysts, Cu2+ ions existing as Cu2+-2Z and [Cu(OH)]+-Z (where Z represents a framework negative charge) are considered the active sites for the selective catalytic reduction of NOx with NH3 (NH3-SCR). Cu2+-2Z is more hydrothermally stable and sulfur poisoning-resistant than [Cu(OH)]+-Z. In this work, Cu-CHA and Cu-LTA catalysts containing only Cu2+-2Z species were successfully synthesized by a novel impregnation (NIM) method, exhibiting remarkably enhanced hydrothermal stability and sulfur resistance compared with any reported Cu-exchanged zeolite catalysts. It was also found that the [Cu(OH)]+-Z sites can convert to Cu2+-2Z by treating at high temperature (850 °C) due to the self-reduction of Cu2+ to highly mobile Cu+. The use of the NIM method not only significantly simplifies the preparation of the catalysts but also can precisely control the Cu loading, which is very important for the control of Cu species. Many other zeolite catalysts can be prepared by this method.
Collapse
Affiliation(s)
- Jinhan Lin
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Xueyang Hu
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuechao Tan
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, South Korea
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Chunxi Lin
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Wenig M, Khare R, Jentys A, Lercher JA. Hydrothermal Stability of Active Sites in Cu-Exchanged Small-Pore Zeolites for the Selective Catalytic Reduction of NO x. Angew Chem Int Ed Engl 2025; 64:e202416954. [PMID: 39576757 DOI: 10.1002/anie.202416954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
Combining operando X-ray absorption spectroscopy (XAS) and computational modelling shows unequivocally the distribution of active species in fresh and hydrothermally aged Cu-CHA and Cu-AEI zeolites during NH3-assisted selective catalytic reduction of NOx. Four principal species co-exist: (i) CuI cations coordinated to NH3, (ii) CuI cations coordinated to the zeolite framework, (iii) solvated CuII cations, and (iv) framework-coordinated CuII species (CuII st) formed upon hydrothermal ageing of the zeolite sample. The CuII st species were only observed in the hydrothermally aged zeolite samples and are formed upon the interaction of hydrated CuII cations with extra-framework Al (EFAl) generated during the hydrothermal treatment. These sites are inactive for NOx reduction, leading to a decrease in the catalytic performance of the hydrothermally aged zeolites. CuII st formation was higher in Cu-CHA (~46 %) than in Cu-AEI (~28 %). The better hydrothermal stability of Cu in the AEI framework is attributed to the tortuous channel structure of AEI that hinders the migration of hydrated CuII cations during hydrothermal ageing.
Collapse
Affiliation(s)
- Mirjam Wenig
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| |
Collapse
|
5
|
Xiao Y, Cai B, Wu H, Wang H, Wang J, Liu J, Ma R, Lv T, Miao L, Liu J, Yin C, Meng C, Ren L. Enhanced NH 3-SCR activity of Cu-SAPO-34 by regulating Si distribution via an interzeolite conversion strategy. Chem Commun (Camb) 2025; 61:1128-1131. [PMID: 39688916 DOI: 10.1039/d4cc04979a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
An interzeolite conversion (IZC) method was developed for the rapid synthesis of Cu-SAPO-34 from SAPO-37, achieving isolated Si distribution and optimized Cu states. The resulting Cu-SAPO-34 exhibited exceptional NH3-SCR performance, with over 90% NO conversion from 200-600 °C due to proper acidity and Cu status generated from the isolated Si.
Collapse
Affiliation(s)
- Yuxuan Xiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Bohui Cai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Huifang Wu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Hui Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiachen Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junyan Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Runyu Ma
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Tianming Lv
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Lei Miao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Jiaxu Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengyang Yin
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Limin Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Abdul Nasir J, Beale AM, Catlow CRA. Understanding deNO x mechanisms in transition metal exchanged zeolites. Chem Soc Rev 2024; 53:11657-11691. [PMID: 39440717 DOI: 10.1039/d3cs00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NOx species. To understand how transition metal ions (TMIs) can effect NOx reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH3-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity via structural modifications.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
7
|
Brenig A, Fischer JWA, Klose D, Jeschke G, van Bokhoven JA, Sushkevich VL. Redox and Kinetic Properties of Composition-Dependent Active Sites in Copper-Exchanged Chabazite for Direct Methane-to-Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202411662. [PMID: 39054903 DOI: 10.1002/anie.202411662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The CH4 oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CH3OH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu2+ and [CuOH]+ present at low Si/Al ratio and Cu loading. Formation of two distinct [Cu2(μ-O)]2+ moieties at higher Si/Al ratio or Cu loading forces these trends into the opposite direction. Operando electron paramagnetic resonance and ultraviolet-visible spectroscopy show that the apparent activation energy of monomeric Cu active species decreases with increasing Si/Al ratio, whereas the one of dimeric centers is unaffected.
Collapse
Affiliation(s)
- Andreas Brenig
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Jörg W A Fischer
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Daniel Klose
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| |
Collapse
|
8
|
Chen Z, Wang H, Zhang X, Wu M, Qu H. Construction of multifunctional interface engineering on Cu-SSZ-13@Ce-MnO x/Mesoporous-silica catalyst for boosting activity, SO 2 tolerance and hydrothermal stability. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135268. [PMID: 39047562 DOI: 10.1016/j.jhazmat.2024.135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Although small pore Cu-SSZ-13 catalysts have been successful as commercial catalysts for controlling NOx emissions from mobile sources, the challenges of high light-off temperature, SO2 tolerance and hydrothermal stability still need to be addressed. Here, we synthesized a multifunctional core-shell catalyst with Cu-SSZ-13 as the core phase and Ce-MnOx supported Mesoporous-silica (Meso-SiO2) as the shell phase via self-assembly and impregnation. The core-shell catalyst exhibited excellent low-temperature activity, SO2 tolerance and hydrothermal stability compared to the Cu-SSZ-13. The Ce-MnOx species dispersed in the shell are found to enhance both the acidic and oxidative properties of the core-shell catalyst. More critically, these species can rapidly activate NO and oxidize it to NO2, which allows the NH3-SCR reaction on the core-shell catalyst to be initiated in the shell phase. Meanwhile, Ce-MnOx species can react preferentially with SO2 as sacrifice components, effectively avoiding the sulfur inactivation of the copper active sites. Furthermore, the hydrophobic Meso-SiO2 shell provides an important barrier for the core phase, which reduces the loss of active species, acid sites and framework Al of the aged core-shell catalyst and mitigates the collapse of the zeolite framework. This work provides a new strategy for the design of novel and efficient NH3-SCR catalysts.
Collapse
Affiliation(s)
- Zhiqiang Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hang Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinjia Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mei Wu
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hongxia Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Chen Y, Liu X, Wang P, Mansoor M, Zhang J, Peng D, Han L, Zhang D. Challenges and Perspectives of Environmental Catalysis for NO x Reduction. JACS AU 2024; 4:2767-2791. [PMID: 39211630 PMCID: PMC11350593 DOI: 10.1021/jacsau.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Environmental catalysis has attracted great interest in air and water purification. Selective catalytic reduction with ammonia (NH3-SCR) as a representative technology of environmental catalysis is of significance to the elimination of nitrogen oxides (NO x ) emitting from stationary and mobile sources. However, the evolving energy landscape in the nonelectric sector and the changing nature of fuel in motor vehicles present new challenges for NO x catalytic purification over the traditional NH3-SCR catalysts. These challenges primarily revolve around the application limitations of conventional industrial NH3-SCR catalysts, such as V2O5-WO3(MoO3)/TiO2 and chabazite (CHA) structured zeolites, in meeting both the severe requirements of high activity at ultralow temperatures and robust resistance to the wide array of poisons (SO2, HCl, phosphorus, alkali metals, and heavy metals, etc.) existing in more complex operating conditions of new application scenarios. Additionally, volatile organic compounds (VOCs) coexisting with NO x in exhaust gas has emerged as a critical factor further impeding the highly efficient reduction of NO x . Therefore, confronting the challenges inherent in current NH3-SCR technology and drawing from the established NH3-SCR reaction mechanisms, we discern that the strategic manipulation of the properties of surface acidity and redox over NH3-SCR catalysts constitutes an important pathway for increasing the catalytic efficiency at low temperatures. Concurrently, the establishment of protective sites and confined structures combined with the strategies for triggering antagonistic effects emerge as imperative items for strengthening the antipoisoning potentials of NH3-SCR catalysts. Finally, we contemplate the essential status of selective synergistic catalytic elimination technology for abating NO x and VOCs. By virtue of these discussions, we aim to offer a series of innovative guiding perspectives for the further advancement of environmental catalysis technology for the highly efficient NO x catalytic purification from nonelectric industries and motor vehicles.
Collapse
Affiliation(s)
- Yanqi Chen
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Xiangyu Liu
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Penglu Wang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Maryam Mansoor
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Jin Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengchao Peng
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Lupeng Han
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengsong Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| |
Collapse
|
10
|
Heard CJ, Grajciar L, Erlebach A. Migration of zeolite-encapsulated subnanometre platinum clusters via reactive neural network potentials. NANOSCALE 2024; 16:8108-8118. [PMID: 38567421 DOI: 10.1039/d4nr00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The migration of atoms and small clusters is an important process in sub-nanometre scale heterogeneous catalysis, affecting activity, accessibility and deactivation through sintering. Control of migration can be partially achieved via encapsulation of sub-nanometre metal particles into porous media such as zeolites. However, a general understanding of the migration mechanisms and their sensitivity to particle size and framework environment is lacking. Here, we extend the time-scale and sampling of atomistic simulations of platinum cluster diffusion in siliceous zeolite frameworks, by introducing a reactive neural network potential of density functional quality. We observe that Pt atoms migrate in a qualitatively different manner from clusters, occupying the dense region of the framework and avoiding the free pore space. We also find that for cage-like zeolite CHA there exists a maximum in self diffusivity for the Pt dimer beyond which, confinement effects hinder intercage migration. By extending the quality of sampling, NNP-based methods allow for the discovery of novel dynamical processes at the atomistic scale, bringing modelling closer to operando experimental characterization of catalytic materials.
Collapse
Affiliation(s)
- Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Praha 2, 12843, Czech Republic.
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Praha 2, 12843, Czech Republic.
| | - Andreas Erlebach
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Praha 2, 12843, Czech Republic.
| |
Collapse
|
11
|
Fu Y, Ding W, Lei H, Sun Y, Du J, Yu Y, Simon U, Chen P, Shan Y, He G, He H. Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO x with NH 3. J Am Chem Soc 2024; 146:11141-11151. [PMID: 38600025 DOI: 10.1021/jacs.3c13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The formation of dimer-Cu species, which serve as the active sites of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies on the mobility of CuI species in the channels of the Cu-SSZ-13 catalysts. Herein, the key role of framework Brønsted acid sites in the mobility of reactive Cu ions was elucidated via a combination of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance ultraviolet-visible spectroscopy. When the number of framework Al sites decreases, the Brønsted acid sites decrease, leading to a systematic increase in the diffusion barrier for [Cu(NH3)2]+ and less formation of highly reactive dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of Al sites is uneven, the [Cu(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage (e.g., cage with paired Al sites), which effectively accelerates the formation of dimer-Cu species and hence promotes the SCR reaction. These findings unveil the mechanism by which framework Brønsted acid sites influence the intercage diffusion and reactivity of [Cu(NH3)2]+ complexes in Cu-SSZ-13 catalysts and provide new insights for the development of zeolite-based catalysts with excellent SCR activity by regulating the microscopic spatial distribution of framework Brønsted acid sites.
Collapse
Affiliation(s)
- Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqing Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Chen M, Zhao W, Wei Y, Ren SB, Chen Y, Mei D, Han DM, Yu J. Improving the hydrothermal stability of Al-rich Cu-SSZ-13 zeolite via Pr-ion modification. Chem Sci 2024; 15:5548-5554. [PMID: 38638225 PMCID: PMC11023032 DOI: 10.1039/d3sc06422k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Al-rich (Si/Al = 4-6) Cu-SSZ-13 has been recognized as one of the potential catalysts to replace the commercial Cu-SSZ-13 (Si/Al = 10-12) towards ammonia-assisted selective catalytic reduction (NH3-SCR). However, poor hydrothermal stability is a great obstacle for Al-rich zeolites to meet the catalytic applications containing water vapor. Herein, we demonstrate that the hydrothermal stability of Al-rich Cu-SSZ-13 can be dramatically enhanced via Pr-ion modification. Particularly, after high-temperature hydrothermal aging (HTA), CuPr1.2-SSZ-13-HTA with an optimal Pr content of 1.2 wt% exhibits a T80 (temperature window of NO conversion above 80%) window of 225-550 °C and a T90 window of 250-350 °C. These values are superior to those of Cu-SSZ-13-HTA (225-450 °C for T80 and no T90 window). The results of X-ray diffraction Rietveld refinement, electron paramagnetic resonance (EPR) and spectral characterization reveal that Pr ions mainly located in the eight-membered rings (8MRs) in SSZ-13 zeolite can inhibit the generation of inactive CuOx during hydrothermal aging. This finding is further supported by density functional theory (DFT) calculations, which suggest that the presence of Pr ions restrains the transformation from Cu2+ ions in 6MRs into CuOx, resulting in enhanced hydrothermal stability. It is also noted that an excessive amount of Pr ions in Cu-SSZ-13 would result in the production of CuOx that causes the decline of catalytic performance. The present work provides a promising strategy for creating a hydrothermally stable Cu-SSZ-13 zeolite catalyst by adding secondary metal ions.
Collapse
Affiliation(s)
- Mengyang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Wenru Zhao
- School of Materials Science and Engineering, Tiangong University Tianjin 300387 China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Shi-Bin Ren
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Yuxiang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering, Tiangong University Tianjin 300387 China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
- International Center of Future Science, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
13
|
Wei Y, Wang S, Chen M, Han J, Yang G, Wang Q, Di J, Li H, Wu W, Yu J. Coaxial 3D Printing of Zeolite-Based Core-Shell Monolithic Cu-SSZ-13@SiO 2 Catalysts for Diesel Exhaust Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302912. [PMID: 37177904 DOI: 10.1002/adma.202302912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Core-shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core-shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite-based core-shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu-SSZ-13 zeolite acts as core. Compared to a Cu-SSZ-13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu-SSZ-13@SiO2, resulting in a 10-20% higher NO conversion at200-550 °C under 300 000 cm3 g-1 h-1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core-shell monolithic catalysts with customized functionalities.
Collapse
Affiliation(s)
- Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shuang Wang
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China
| | - Mengyang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 317000, China
| | - Jinfeng Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guoju Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiancheng Di
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hongli Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| |
Collapse
|
14
|
Zhu J, Muraoka K, Ohnishi T, Yanaba Y, Ogura M, Nakayama A, Wakihara T, Liu Z, Okubo T. Synthesis and Structural Analysis of High-Silica ERI Zeolite with Spatially-Biased Al Distribution as a Promising NH 3-SCR Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307674. [PMID: 38308139 PMCID: PMC11005726 DOI: 10.1002/advs.202307674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Erionite (ERI) zeolite has recently attracted considerable attention for its application prospect in the selective catalytic reduction of NOx with NH3 (NH3-SCR), provided that the high-silica (Si/Al > 5.5) analog with improved hydrothermal stability can be facilely synthesized. In this work, ERI zeolites with different Si/Al ratios (4.6, 6.4, and 9.1) are synthesized through an ultrafast route, and in particular, a high-silica ERI zeolite with a Si/Al ratio of 9.1 is obtained by using faujasite (FAU) as a starting material. The solid-state 29Si MAS NMR spectroscopic study in combination with a computational simulation allows for figuring out the atomic configurations of the Al species in the three ERI zeolites. It is revealed that the ERI zeolite with the highest Si/Al ratio (ERI-9.1, where the number indicates the Si/Al ratio) exhibits a biased Al occupancy at T1 site, which is possibly due to the presence of a higher fraction of the residual potassium cations in the can cages. In contrast, the Al siting in ERI-4.6 and ERI-6.4 proves to be relatively random.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Chemical System EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
| | - Koki Muraoka
- Department of Chemical System EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
| | - Takeshi Ohnishi
- Institute of Industrial ScienceThe University of Tokyo4‐6‐1 KomabaMeguro‐kuTokyo153‐8505Japan
| | - Yutaka Yanaba
- Institute of Industrial ScienceThe University of Tokyo4‐6‐1 KomabaMeguro‐kuTokyo153‐8505Japan
| | - Masaru Ogura
- Institute of Industrial ScienceThe University of Tokyo4‐6‐1 KomabaMeguro‐kuTokyo153‐8505Japan
| | - Akira Nakayama
- Department of Chemical System EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
| | - Toru Wakihara
- Department of Chemical System EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
- Institute of Engineering InnovationThe University of Tokyo2‐11‐16 YayoiBunkyo‐kuTokyo113‐8656Japan
| | - Zhendong Liu
- Department of Chemical System EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
- Institute of Engineering InnovationThe University of Tokyo2‐11‐16 YayoiBunkyo‐kuTokyo113‐8656Japan
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityHaidian DistrictBeijing100084China
| | - Tatsuya Okubo
- Department of Chemical System EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
15
|
Han J, Li J, Zhao W, Li L, Chen M, Ge X, Wang S, Liu Q, Mei D, Yu J. Cu-OFF/ERI Zeolite: Intergrowth Structure Synergistically Boosting Selective Catalytic Reduction of NO x with NH 3. J Am Chem Soc 2024; 146:7605-7615. [PMID: 38467427 DOI: 10.1021/jacs.3c13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Cu-SSZ-13 has been commercialized for selective catalytic reduction with ammonia (NH3-SCR) to remove NOx from diesel exhaust. As its synthesis usually requires toxic and costly organic templates, the discovery of alternative Cu-based zeolite catalysts with organotemplate-free synthesis and comparable or even superior NH3-SCR activity to that of Cu-SSZ-13 is of great academic and industrial significance. Herein, we demonstrated that Cu-T with an intergrowth structure of offretite (OFF) and erionite (ERI) synthesized by an organotemplate-free method showed better catalytic performance than Cu-ERI and Cu-OFF as well as Cu-SSZ-13. Structure characterizations and density functional theory calculations indicated that the intergrowth structure promoted more isolated Cu2+ located at the 6MR of the intergrowth interface, resulting in a better hydrothermal stability of Cu-T than Cu-ERI and Cu-OFF. Strikingly, the low-temperature activity of Cu-T significantly increased after hydrothermal aging, while that of Cu-ERI and Cu-OFF substantially decreased. Based on in situ diffuse reflectance infrared Fourier transform spectra analysis and density functional theory calculations, the reason can be attributed to the fact that NH4NO3 formed on the CuxOy species within ERI polymorph of Cu-T underwent a fast SCR reaction pathway with the assistance of Brønsted acid sites at the intergrowth interfaces under standard SCR reaction conditions. Significantly, Cu-T exhibited a wider temperature window at a catalytic activity of over 90% than Cu-SSZ-13 (175-550 vs 175-500 °C for fresh and 225-500 vs 250-400 °C for hydrothermal treatment). This work provides a new direction for the design of high-performance NH3-SCR catalysts in terms of the interplay of the intergrowth structure of zeolites.
Collapse
Affiliation(s)
- Jinfeng Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wenru Zhao
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Lin Li
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
| | - Mengyang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Xin Ge
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
16
|
Fu Y, Sun Y, Shan Y, Chen J, Du J, He G, He H. Unexpected Promotion Effect of H 2O on the Selective Catalytic Reduction of NO x with NH 3 over Cu-SSZ-39 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38314553 DOI: 10.1021/acs.est.3c07265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Water molecules commonly inhibit the selective catalytic reduction (SCR) of NOx with NH3 on most catalysts, and water resistance is a long-standing challenge for SCR technology. Herein, by combining experimental measurements and density functional theory (DFT) calculations, we found that water molecules do not inhibit and even promote the NOx conversion to some extent over the Cu-SSZ-39 zeolites, a promising SCR catalyst. Water acting as a ligand on active Cu sites and as a reactant in the SCR reaction significantly improves the O2 activation performance and reduces the overall energy barrier of the catalytic cycle. This work unveils the mechanism of the unexpected promotion effect of water on the NH3-SCR reaction over Cu-SSZ-39 and provides fundamental insight into the development of zeolite-based SCR catalysts with excellent activity and water resistance.
Collapse
Affiliation(s)
- Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junlin Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
Hoffman AJ, Temmerman W, Campbell E, Damin AA, Lezcano-Gonzalez I, Beale AM, Bordiga S, Hofkens J, Van Speybroeck V. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. J Chem Theory Comput 2024; 20:513-531. [PMID: 38157404 PMCID: PMC10809426 DOI: 10.1021/acs.jctc.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.
Collapse
Affiliation(s)
| | - Wim Temmerman
- Center
for Molecular Modeling, Ghent University, 9000 Ghent, Belgium
| | - Emma Campbell
- Cardiff
Catalysis Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
| | | | - Ines Lezcano-Gonzalez
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Andrew M. Beale
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Silvia Bordiga
- Department
of Chemistry, University of Turin, 10124 Turin, Italy
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3000 Leuven, Belgium
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
18
|
Schmithorst MB, Prasad S, Moini A, Chmelka BF. Direct Detection of Paired Aluminum Heteroatoms in Chabazite Zeolite Catalysts and Their Significance for Methanol Dehydration Reactivity. J Am Chem Soc 2023; 145:18215-18220. [PMID: 37552830 DOI: 10.1021/jacs.3c05708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The distributions of heteroatoms within zeolite frameworks have important influences on the locations of exchangeable cations, which account for the diverse adsorption and reaction properties of zeolite catalysts. In particular for aluminosilicate zeolites, paired configurations of aluminum atoms separated by one or two tetrahedrally coordinated silicon atoms are important for charge-balancing pairs of H+ cations, which are active for methanol dehydration, or divalent metal cations, such as Cu2+, which selectively catalyze the reduction of NOx, both technologically important reactions. Such paired heteroatom configurations, however, are challenging to detect and probe, due to the typically nonstoichiometric compositions and nonperiodic distributions of aluminum atoms within aluminosilicate zeolite frameworks. Nevertheless, distinct configurations of paired framework aluminum atoms are unambiguously detected and resolved in solid-state 2D 27Al-29Si and 29Si-29Si NMR spectra, which are sensitive to the local environments of covalently bonded 27Al-O-29Si and 29Si-O-29Si moieties, respectively. Specifically, two H+-chabazite zeolites with the same bulk framework aluminum contents are shown to have different types and populations of closely paired aluminum species, which correlate with higher activity for methanol dehydration. The methodologies and insights are expected to be broadly applicable to analyses of heteroatom sites, their distributions, and adsorption and reaction properties in other zeolite framework types.
Collapse
Affiliation(s)
- Michael B Schmithorst
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | | | - Ahmad Moini
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Improvement of Cu-SAPO-34 hydrothermal stability by tuning P/Al ratio for selective catalytic reduction of NO by NH 3. J Colloid Interface Sci 2023; 638:686-694. [PMID: 36774880 DOI: 10.1016/j.jcis.2023.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/14/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Cu-SAPO-34 is a promising catalyst for abatement of NO via selective catalytic reduction with NH3 (NH3-SCR), but its hydrothermal stability needs to be enhanced. In this work, the Cu-SAPO-34 catalysts with different P/Al ratios of 0.8, 1.0 and 1.2 were prepared, and the temperature window with NO conversion >90% (T90) for all catalysts were similar (160-570 °C). The T90 of Cu-SAPO-34 with P/Al of 0.8 dramatically decreased (220-470 °C) after hydrothermal treatment, and interestingly, the catalysts with high P/Al ratios (1.0 and 1.2) remained high activity. The T90 of the aged catalysts with P/Al of 1.2 was 155-525 °C. The characterizations showed that the increase of P/Al ratio not only enhanced the crystallinity but also enlarged the grain size of catalysts, which were conducive to the zeolite framework stability. Moreover, the Cu-SAPO-34 with large grain size facilitated the conversion of CuO to isolated Cu2+ ions as well as inhibited the aggregation of Cu species. Furthermore, the large grain sized catalysts provided more acid sites, and thus, the catalysts presented excellent hydrothermal stability. In situ DRIFTS analysis confirmed the existence of both Langmuir-Hinshelwood and Eley-Rideal pathway over the catalyst with a P/Al ratio of 1.2. This work provided a facile method to promote the hydrothermal stability of Cu-based zeolite catalysts.
Collapse
|
20
|
Wu Y, Zhao W, Ahn SH, Wang Y, Walter ED, Chen Y, Derewinski MA, Washton NM, Rappé KG, Wang Y, Mei D, Hong SB, Gao F. Interplay between copper redox and transfer and support acidity and topology in low temperature NH 3-SCR. Nat Commun 2023; 14:2633. [PMID: 37149681 PMCID: PMC10164144 DOI: 10.1038/s41467-023-38309-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Low-temperature standard NH3-SCR over copper-exchanged zeolite catalysts occurs on NH3-solvated Cu-ion active sites in a quasi-homogeneous manner. As key kinetically relevant reaction steps, the reaction intermediate CuII(NH3)4 ion hydrolyzes to CuII(OH)(NH3)3 ion to gain redox activity. The CuII(OH)(NH3)3 ion also transfers between neighboring zeolite cages to form highly reactive reaction intermediates. Via operando electron paramagnetic resonance spectroscopy and SCR kinetic measurements and density functional theory calculations, we demonstrate here that such kinetically relevant steps become energetically more difficult with lower support Brønsted acid strength and density. Consequently, Cu/LTA displays lower Cu atomic efficiency than Cu/CHA and Cu/AEI, which can also be rationalized by considering differences in their support topology. By carrying out hydrothermal aging to eliminate support Brønsted acid sites, both CuII(NH3)4 ion hydrolysis and CuII(OH)(NH3)3 ion migration are hindered, leading to a marked decrease in Cu atomic efficiency for all catalysts.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Wenru Zhao
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Sang Hyun Ahn
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Ying Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Miroslaw A Derewinski
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
- J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163, US
| | - Donghai Mei
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea.
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US.
| |
Collapse
|
21
|
Huang S, Wang Q, Shan Y, Shi X, Liu Z, He H. Effects of Si/Al Ratio on Passive NO x Adsorption Performance over Pd/Beta Zeolites. Molecules 2023; 28:molecules28083501. [PMID: 37110735 PMCID: PMC10145102 DOI: 10.3390/molecules28083501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the current article, the effect of Si/Al ratio on the NOx adsorption and storage capacity over Pd/Beta with 1 wt% Pd loading was investigated. The XRD, 27Al NMR and 29Si NMR measurements were used to determine the structure of Pd/Beta zeolites. XAFS, XPS, CO-DRIFT, TEM and H2-TPR were used to identify the Pd species. The results showed that the NOx adsorption and storage capacity on Pd/Beta zeolites gradually decreased with the increase of Si/Al ratio. Pd/Beta-Si (Si-rich, Si/Al~260) rarely has NOx adsorption and storage capacity, while Pd/Beta-Al (Al-rich, Si/Al~6) and Pd/Beta-C (Common, Si/Al~25) exhibit excellent NOx adsorption and storage capacity and suitable desorption temperature. Pd/Beta-C has slightly lower desorption temperature compared to Pd/Beta-Al. The NOx adsorption and storage capacity increased for Pd/Beta-Al and Pd/Beta-C by hydrothermal aging treatment, while the NOx adsorption and storage capacity on Pd/Beta-Si had no change.
Collapse
Affiliation(s)
- Shasha Huang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiang Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongqi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
22
|
Chen J, Shan Y, Sun Y, Ding W, Xue S, Han X, Du J, Yan Z, Yu Y, He H. Hydrothermal Aging Alleviates the Phosphorus Poisoning of Cu-SSZ-39 Catalysts for NH 3-SCR Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4113-4121. [PMID: 36811527 DOI: 10.1021/acs.est.2c08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a new type of catalyst with the potential for commercial application in NOx removal from diesel engine exhausts, Cu-SSZ-39 catalysts must have excellent resistance to complex and harsh conditions. In this paper, the effects of phosphorus on Cu-SSZ-39 catalysts before and after hydrothermal aging treatment were investigated. Compared with fresh Cu-SSZ-39 catalysts, phosphorus poisoning significantly decreased the low-temperature NH3-SCR catalytic activity. However, such activity loss was alleviated by further hydrothermal aging treatment. To reveal the reason for this interesting result, a variety of characterization techniques including NMR, H2-TPR, X-ray photoelectron spectroscopy, NH3-TPD, and in situ DRIFTS measurements were employed. It was found that Cu-P species produced by phosphorus poisoning decreased the redox ability of active copper species, resulting in the observed low-temperature deactivation. After hydrothermal aging treatment, however, Cu-P species partly decomposed with the formation of active CuOx species and a release of active copper species. As a result, the low-temperature NH3-SCR catalytic activity of Cu-SSZ-39 catalysts was recovered.
Collapse
Affiliation(s)
- Junlin Chen
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Ding
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sen Xue
- Weichai Power Co., Ltd., Weifang 261061, China
| | - Xuewang Han
- Weichai Power Co., Ltd., Weifang 261061, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zidi Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Yunbo Yu
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Liu Z, Shan Y, Han S, Fu Y, Du J, Sun Y, Shi X, Yu Y, He H. Insights into SO 2 Poisoning Mechanisms of Fresh and Hydrothermally Aged Cu-KFI Catalysts for NH 3-SCR Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4308-4317. [PMID: 36808994 DOI: 10.1021/acs.est.2c09805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complex poisoning of Cu-KFI catalysts by SO2 and hydrothermal aging (HTA) was investigated. The low-temperature activity of Cu-KFI catalysts was restrained by the formation of H2SO4 and then CuSO4 after sulfur poisoning. Hydrothermally aged Cu-KFI exhibited better SO2 resistance than fresh Cu-KFI since HTA significantly reduced the number of Brønsted acid sites, which were considered to be the H2SO4 storage sites. The high-temperature activity of SO2-poisoned Cu-KFI was basically unchanged compared to the fresh catalyst. However, SO2 poisoning promoted the high-temperature activity of hydrothermally aged Cu-KFI since it triggered CuOx into CuSO4 species, which was considered as an important role in the NH3-SCR reaction at high temperatures. In addition, hydrothermally aged Cu-KFI catalysts were more easily regenerated after SO2 poisoning than fresh Cu-KFI on account of the instability of CuSO4.
Collapse
Affiliation(s)
- Zhongqi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichao Han
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
24
|
Zhang C, Liu X, Jiang M, Wen Y, Zhang J, Qian G. A review on identification, quantification, and transformation of active species in SCR by EPR spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28550-28562. [PMID: 36708481 DOI: 10.1007/s11356-023-25467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Electron paramagnetic resonance (EPR) is the only technique that provides direct detection of free radicals and samples that contain unpaired electrons. Thus, EPR had an important potential application in the field of selective catalytic reduction of nitrogen oxide (SCR). For the first time, this work reviewed recent developments of EPR in charactering SCR. First, qualitative analysis focused on recognizing Cu, Fe, V, Ti, Mn, and free-radical (oxygen vacancy and superoxide radical) species. Second, quantification of the active species was obtained by a double-integral and calibration method. Third, the active species evolved because of different thermal treatments and redox-thermal processes under reductants (NH3 and NO). The coordination information of the active species in catalysts and their effects on SCR performances were concluded from mechanism viewpoints. Finally, potential perspectives were put forward for EPR developments in characterizing the SCR processes in the future. After all, EPR characterization will help to have a deep understanding of structure-activity relationship in one catalyst.
Collapse
Affiliation(s)
- Chenchen Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Xinyu Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Meijia Jiang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Yuling Wen
- Shanghai SUS Environment Co., LTD, Shanghai, 201703, China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China.
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, People's Republic of China
| |
Collapse
|
25
|
Xie M, Xiao X, Wang J, Chen J, Kang H, Wang N, Chu W, Li L. Mechanistic insights into the cobalt promotion on low-temperature NH3-SCR reactivity of Cu/SSZ-13. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
26
|
Xiong W, Liu L, Guo A, Chen D, Shan Y, Fu M, Wu J, Ye D, Chen P. Economical and Sustainable Synthesis of Small-Pore Chabazite Catalysts for NO x Abatement by Recycling Organic Structure-Directing Agents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:655-665. [PMID: 36563090 DOI: 10.1021/acs.est.2c07239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use of expensive N,N,N-trimethyl-1-ammonium adamantine hydroxide (TMAdaOH) as an organic structure-directing agent (OSDA) during hydrothermal synthesis. Here, we report an economical and sustainable route for SSZ-13 synthesis by recycling and reusing the OSDA-containing waste liquids. The TMAdaOH concentration in waste liquids, determined by a bromocresol green colorimetric method, was found to be a key factor for SSZ-13 crystallization. The SSZ-13 zeolite synthesized under optimized conditions demonstrates similar physicochemical properties (surface area, porosity, crystallinity, Si/Al ratio, etc.) as that of the conventional synthetic approach. We then used the waste liquid-derived SSZ-13 as the parent zeolite to synthesize Cu ion-exchanged SSZ-13 (i.e., Cu-SSZ-13) for ammonia-mediated selective catalytic reduction of NOx (NH3-SCR) and observed a higher activity as well as better hydrothermal stability than Cu-SSZ-13 by conventional synthesis. In situ infrared and ultraviolet-visible spectroscopy investigations revealed that the superior NH3-SCR performance of waste liquid-derived Cu-SSZ-13 results from a higher density of Cu2+ sites coordinated to paired Al centers on the zeolite framework. The technoeconomic analysis highlights that recycling OSDA-containing waste liquids could reduce the raw material cost of SSZ-13 synthesis by 49.4% (mainly because of the higher utilization efficiency of TMAdaOH) and, meanwhile, the discharging of wastewater by 45.7%.
Collapse
Affiliation(s)
- Wuwan Xiong
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Linhui Liu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Anqi Guo
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Mingli Fu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Junliang Wu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
27
|
Guan B, Zhou J, Liu Z, Wu X, Wei Y, Guo J, Jiang H, Lin H, Huang Z. Degenerating effect of transformation and loss of active sites on NH3-SCR activity during the hydrothermal aging process for Cu-SSZ-13 molecular sieve catalyst. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Sun Y, Fu Y, Shan Y, Du J, Liu Z, Gao M, Shi X, He G, Xue S, Han X, Yu Y, He H. Si/Al Ratio Determines the SCR Performance of Cu-SSZ-13 Catalysts in the Presence of NO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17946-17954. [PMID: 36322164 DOI: 10.1021/acs.est.2c03813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A comparative study was performed to investigate the NH3-selective catalytic reduction (SCR) reaction activity of Cu-SSZ-13 zeolites having Si/Al ratios (SARs) of 5, 18, and 30. Remarkably, the Cu-SSZ-13 zeolite catalysts exhibited completely opposite behaviors as a function of SAR under standard SCR (SSCR) and fast SCR (FSCR) reaction atmospheres. Under SSCR conditions, the NOx conversion increased as expected with the decreasing SAR. Under FSCR conditions, however, the NOx conversion decreased as the SAR decreased, contrary to expectations. In this study, based on characterization of the catalysts by X-ray diffraction, transmission electron microscopy, electron paramagnetic resonance, H2-temperature-programmed reduction, temperature-programmed desorption, and diffuse reflectance infrared Fourier transform spectroscopy, together with theoretical calculations, the authors found that the amount of Brønsted acid sites goes up while the SAR goes down, leading to an increase in the accumulation of NH4NO3 under FSCR reaction conditions. Moreover, the accumulated NH4NO3 is of greater stability for those low SAR Cu-SSZ-13 catalysts. These two reasons cause the FSCR performance of Cu-SSZ-13 to decrease with a decrease in SAR. As a result, the NO2 effect on SCR activity changes from promotion to inhibition as the SAR decreases.
Collapse
Affiliation(s)
- Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Zhongqi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Meng Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Sen Xue
- Weichai Power Co., Ltd., Weifang261061, China
| | - Xuewang Han
- Weichai Power Co., Ltd., Weifang261061, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| |
Collapse
|
29
|
Qi X, Wang Y, Liu C, Liu Q. The Challenges and Comprehensive Evolution of Cu-Based Zeolite Catalysts for SCR Systems in Diesel Vehicles: A Review. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
30
|
Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst. Catalysts 2022. [DOI: 10.3390/catal12121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Benefiting from the exceptional selective catalytic reduction of NOx with ammonia (NH3-SCR) activity, excellent N2 selectivity, and superior hydrothermal durability, the Cu2+-exchanged zeolite catalyst with a chabazite structure (Cu-CHA) has been considered the predominant SCR catalyst in nitrogen oxide (NOx) abatement. However, sulfur poisoning remains one of the most significant deterrents to the catalyst in real applications. This review summarizes the NH3-SCR reaction mechanism on Cu-CHA, including the active sites and the nature of hydrothermal aging resistance. On the basis of the NH3-SCR reaction mechanism, the review gives a comprehensive summary of sulfate species, sulfate loading, emitted gaseous composition, and the impact of exposure temperature/time on Cu-CHA. The nature of the regeneration of sulfated catalysts is also covered in this review. The review gives a valuable summary of new insights into the matching between the design of NH3-SCR activity and sulfur resistance, highlighting the opportunities and challenges presented by Cu-CHA. Guidance for future sulfur poisoning diagnosis, effective regeneration strategies, and a design for an efficient catalyst for the aftertreatment system (ATS) are proposed to minimize the deterioration of NOx abatement in the future. Finally, we call for more attention to be paid to the effects of PO43- and metal co-cations with sulfur in the ATS.
Collapse
|
31
|
Guo J, Wang A, Lin H. Enhanced phosphorus resistance of sodium-promoted Cu/CHA catalysts towards NH3-SCR. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Li P, Xin Y, Zhang H, Yang F, Tang A, Han D, Jia J, Wang J, Li Z, Zhang Z. Recent progress in performance optimization of Cu-SSZ-13 catalyst for selective catalytic reduction of NO x. Front Chem 2022; 10:1033255. [PMID: 36324517 PMCID: PMC9621587 DOI: 10.3389/fchem.2022.1033255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
Nitrogen oxides (NO x ), which are the major gaseous pollutants emitted by mobile sources, especially diesel engines, contribute to many environmental issues and harm human health. Selective catalytic reduction of NO x with NH3 (NH3-SCR) is proved to be one of the most efficient techniques for reducing NO x emission. Recently, Cu-SSZ-13 catalyst has been recognized as a promising candidate for NH3-SCR catalyst for reducing diesel engine NO x emissions due to its wide active temperature window and excellent hydrothermal stability. Despite being commercialized as an advanced selective catalytic reduction catalyst, Cu-SSZ-13 catalyst still confronts the challenges of low-temperature activity and hydrothermal aging to meet the increasing demands on catalytic performance and lifetime. Therefore, numerous studies have been dedicated to the improvement of NH3-SCR performance for Cu-SSZ-13 catalyst. In this review, the recent progress in NH3-SCR performance optimization of Cu-SSZ-13 catalysts is summarized following three aspects: 1) modifying the Cu active sites; 2) introducing the heteroatoms or metal oxides; 3) regulating the morphology. Meanwhile, future perspectives and opportunities of Cu-SSZ-13 catalysts in reducing diesel engine NO x emissions are discussed.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ying Xin
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Hanxue Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Fuzhen Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ahui Tang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Dongxu Han
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Junxiu Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin, China
| | - Zhaoliang Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| |
Collapse
|
33
|
Porous organic cage supramolecular membrane showing superior monovalent/divalent salts separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Chen J, Huang W, Bao S, Zhang W, Liang T, Zheng S, Yi L, Guo L, Wu X. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH 3-SCR. RSC Adv 2022; 12:27746-27765. [PMID: 36320283 PMCID: PMC9517171 DOI: 10.1039/d2ra05107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 06/07/2024] Open
Abstract
Cu-based and Fe-based zeolites are promising catalysts for NH3-SCR due to their high catalytic activity, wide temperature window and good hydrothermal stability, while the detailed investigation of NH3-SCR mechanism should be based on the accurate determination of active metal sites. This review systematically summarizes the qualitative and quantitative determination of metal active sites in Cu-based or Fe-based zeolites for NH3-SCR reactions based on advanced characterization methods such as UV-vis absorption (UV-vis), temperature-programmed reduction with H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure spectroscopy (XAFS), Infrared spectroscopy (IR), Electron paramagnetic resonance (EPR), Mössbauer spectroscopy and DFT calculations. The application and limitations of different characterization methods are also discussed to provide insights for further study of the NH3-SCR reaction mechanism over metal-based zeolites.
Collapse
Affiliation(s)
- Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wei Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Sizhuo Bao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wenbo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Tingyu Liang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Shenke Zheng
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Chemistry and Chemical Engineering, Huanggang Normal University Huanggang 438000 China
| | - Lan Yi
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| |
Collapse
|
35
|
Jabłońska M. Review of the application of Cu-containing SSZ-13 in NH 3-SCR-DeNO x and NH 3-SCO. RSC Adv 2022; 12:25240-25261. [PMID: 36199328 PMCID: PMC9450943 DOI: 10.1039/d2ra04301g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
The reduction of NO x emissions has become one of the most important subjects in environmental protection. Cu-containing SSZ-13 is currently the state-of-the-art catalyst for the selective catalytic reduction of NO x with ammonia (NH3-SCR-DeNO x ). Although the current-generation catalysts reveal enhanced activity and remarkable hydrothermal stability, still open challenges appear. Thus, this review focuses on the progress of Cu-containing SSZ-13 regarding preparation methods, hydrothermal resistance and poisoning as well as reaction mechanisms in NH3-SCR-DeNO x . Remarkably, the paper reviews also the progress of Cu-containing SSZ-13 in the selective ammonia oxidation into nitrogen and water vapor (NH3-SCO). The dynamics in the NH3-SCR-DeNO x and NH3-SCO fields make this review timely.
Collapse
Affiliation(s)
- Magdalena Jabłońska
- Institute of Chemical Technology, Universität Leipzig Linnéstr. 3 04103 Leipzig Germany
| |
Collapse
|
36
|
Khurana I, Albarracin-Caballero JD, Shih AJ. Identification and quantification of multinuclear Cu active sites derived from monomeric Cu moieties for dry NO oxidation over Cu-SSZ-13. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
38
|
Comparison of Industrial and Lab-Scale Ion Exchange for the DeNOx-SCR Performance of Cu Chabazites: A Case Study. Catalysts 2022. [DOI: 10.3390/catal12080880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The efficiency and robustness of selective catalytic reduction (SCR) by NH3 catalysts for exhaust gas purification, especially of heavy-duty diesel engines, will continue to play a major role, despite the increasing electrification of powertrains. With that in mind, the effect of the synthesis scale on commercially available Cu-exchanged chabazite catalysts for SCR was investigated through physicochemical characterizations and catalytic tests. During hydrothermal aging, both industrial and lab-scale prepared catalysts underwent structural dealumination of the zeolite framework and redistribution of the Al sites. Although both catalysts demonstrated similar NO conversion activity under SCR conditions, the lab-scale catalyst showed higher selectivity and lower activity in NH3 oxidation. Variations in N2O formation and NH3 oxidation rate were found to correlate with the formation of different copper species, and the compositions become less controllable in industrial-scale process. This case study focused on routes of ion exchange, and the results provide new insights into catalytic performance of the industrially-produced zeolites.
Collapse
|
39
|
Shan Y, He G, Du J, Sun Y, Liu Z, Fu Y, Liu F, Shi X, Yu Y, He H. Strikingly distinctive NH 3-SCR behavior over Cu-SSZ-13 in the presence of NO 2. Nat Commun 2022; 13:4606. [PMID: 35941128 PMCID: PMC9360435 DOI: 10.1038/s41467-022-32136-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Commercial Cu-exchanged small-pore SSZ-13 (Cu-SSZ-13) zeolite catalysts are highly active for the standard selective catalytic reduction (SCR) of NO with NH3. However, their activity is unexpectedly inhibited in the presence of NO2 at low temperatures. This is strikingly distinct from the NO2-accelerated NOx conversion over other typical SCR catalyst systems. Here, we combine kinetic experiments, in situ X-ray absorption spectroscopy, and density functional theory (DFT) calculations to obtain direct evidence that under reaction conditions, strong oxidation by NO2 forces Cu ions to exist mainly as CuII species (fw-Cu2+ and NH3-solvated CuII with high CNs), which impedes the mobility of Cu species. The SCR reaction occurring at these CuII sites with weak mobility shows a higher energy barrier than that of the standard SCR reaction on dynamic binuclear sites. Moreover, the NO2-involved SCR reaction tends to occur at the Brønsted acid sites (BASs) rather than the CuII sites. This work clearly explains the strikingly distinctive selective catalytic behavior in this zeolite system.
Collapse
Affiliation(s)
- Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongqi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32816, USA
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Yong X, Li Y, Liu S, Chen H, Zhang C. Tuning the high-temperature hydrothermal stability of one-pot derived Cu-SSZ-13 in the presence of SO2 for selective catalytic reduction of NOx by ammonia. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Bruzzese PC, Salvadori E, Civalleri B, Jäger S, Hartmann M, Pöppl A, Chiesa M. The Structure of Monomeric Hydroxo-Cu II Species in Cu-CHA. A Quantitative Assessment. J Am Chem Soc 2022; 144:13079-13083. [PMID: 35819401 PMCID: PMC9335873 DOI: 10.1021/jacs.2c06037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Using EPR and HYSCORE spectroscopies in conjunction with ab initio calculations, we assess the structure of framework-bound
monomeric hydroxo-CuII in copper-loaded chabazite (CHA).
The species is an interfacial distorted square-planar [CuIIOH(O-8MRs)3] complex located at eight-membered-ring windows,
displaying three coordinating bonds with zeolite lattice oxygens and
the hydroxo ligand hydrogen-bonded to the cage. The complex has a
distinctive EPR signature with g = [2.072 2.072 2.290], CuA= [30 30 410] MHz, and HA = [−13.0 −4.5 +11.5] MHz, distinctively different
from other CuII species in CHA.
Collapse
Affiliation(s)
- Paolo Cleto Bruzzese
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany.,Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Bartolomeo Civalleri
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Stefan Jäger
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Mario Chiesa
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| |
Collapse
|
42
|
Chen M, Li J, Xue W, Wang S, Han J, Wei Y, Mei D, Li Y, Yu J. Unveiling Secondary-Ion-Promoted Catalytic Properties of Cu-SSZ-13 Zeolites for Selective Catalytic Reduction of NO x. J Am Chem Soc 2022; 144:12816-12824. [PMID: 35802169 DOI: 10.1021/jacs.2c03877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incorporation of secondary metal ions into Cu-exchanged SSZ-13 zeolites could improve their catalytic properties in selective catalytic reduction of NOx with ammonia (NH3-SCR), but their essential roles remain unclear at the molecular level. Herein, a series of Cu-Sm-SSZ-13 zeolites have been prepared by ion-exchanging Sm ions followed by Cu ions, which exhibit superior NH3-SCR performance. The NO conversion of Cu-Sm-SSZ-13 is nearly 10% higher than that of conventional Cu-SSZ-13 (175-250 °C) after hydrothermal ageing, showing an enhanced low-temperature activity. The Sm ions are found to occupy the six-membered rings (6MRs) of SSZ-13 by X-ray diffraction Rietveld refinement and aberration-corrected scanning transmission electron microscopy. The Sm ions at 6MRs can facilitate the formation of more active [ZCu2+(OH)]+ ions at 8MRs, as revealed by temperature-programmed reduction of hydrogen. X-ray photoelectron spectroscopy and density functional theory (DFT) calculations indicate that there exists electron transfer from Sm3+ to [ZCu2+(OH)]+ ions, which promotes the activity of [ZCu2+(OH)]+ ions by decreasing the activation energy of the formation of intermediates (NH4NO2 and H2NNO). Meanwhile, the electrostatic interaction between Sm3+ and [ZCu2+(OH)]+ results in a high-reaction energy barrier for transforming [ZCu2+(OH)]+ ions into inactive CuOx species, thus enhancing the stability of [ZCu2+(OH)]+ ions. The influence of the ion-exchanging sequence of Sm and Cu ions into SSZ-13 is further investigated by combining both experiments and theoretical calculations. This work provides a mechanistic insight of secondary ions in regulating the distribution, activity, and stability of Cu active sites, which is helpful for the design of high-performance Cu-SSZ-13 catalysts for the NH3-SCR reaction.
Collapse
Affiliation(s)
- Mengyang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wenjuan Xue
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Jinfeng Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
43
|
Zhang W, Shen M, Wang J, Li X, Wang J, Shen G, Wang C. Unraveling the nature of cerium on stabilizing Cu/SAPO-34 NH3-SCR catalysts under hydrothermal aging at low temperatures. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Huang M, Maeno Z, Toyao T, Shimizu KI. Ga speciation and ethane dehydrogenation catalysis of Ga-CHA and MOR: Comparative investigation with Ga-MFI. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Yoshioka T, Iyoki K, Hotta Y, Kamimura Y, Yamada H, Han Q, Kato T, Fisher CAJ, Liu Z, Ohnishi R, Yanaba Y, Ohara K, Sasaki Y, Endo A, Takewaki T, Sano T, Okubo T, Wakihara T. Dealumination of small-pore zeolites through pore-opening migration process with the aid of pore-filler stabilization. SCIENCE ADVANCES 2022; 8:eabo3093. [PMID: 35731864 PMCID: PMC9216521 DOI: 10.1126/sciadv.abo3093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Small-pore zeolites are gaining increasing attention owing to their superior catalytic performance. Despite being critical for the catalytic activity and lifetime, postsynthetic tuning of bulk Si/Al ratios of small-pore zeolites has not been achieved with well-preserved crystallinity because of the limited mass transfer of aluminum species through narrow micropores. Here, we demonstrate a postsynthetic approach to tune the composition of small-pore zeolites using a previously unexplored strategy named pore-opening migration process (POMP). Acid treatment assisted by stabilization of the zeolite framework by organic cations in pores is proven to be successful for the removal of Al species from zeolite via POMP. Furthermore, the dealuminated AFX zeolite is treated via defect healing, which yields superior hydrothermal stability against severe steam conditions. Our findings could facilitate industrial applications of small-pore zeolites via aluminum content control and defect healing and could elucidate the structural reconstruction and arrangement processes for inorganic microporous materials.
Collapse
Affiliation(s)
- Tatsushi Yoshioka
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenta Iyoki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Corresponding author. (K.I.); (T.W.)
| | - Yuusuke Hotta
- Mitsubishi Chemical Corporation, Science and Innovation Center, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Yoshihiro Kamimura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroki Yamada
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Qiao Han
- Mitsubishi Chemical Corporation, Science and Innovation Center, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Takeharu Kato
- Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Craig A. J. Fisher
- Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Zhendong Liu
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryohji Ohnishi
- Mitsubishi Chemical Corporation, Science and Innovation Center, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Yutaka Yanaba
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Koji Ohara
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yukichi Sasaki
- Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Akira Endo
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takahiko Takewaki
- Mitsubishi Chemical Corporation, Science and Innovation Center, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Tsuneji Sano
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Okubo
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toru Wakihara
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Corresponding author. (K.I.); (T.W.)
| |
Collapse
|
46
|
Wu Y, Ma Y, Wang Y, Rappé KG, Washton NM, Wang Y, Walter ED, Gao F. Rate Controlling in Low-Temperature Standard NH 3-SCR: Implications from Operando EPR Spectroscopy and Reaction Kinetics. J Am Chem Soc 2022; 144:9734-9746. [PMID: 35605129 DOI: 10.1021/jacs.2c01933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yue Ma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
47
|
Yong X, Chen H, Zhao H, Wei M, Zhao Y, Li Y. Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NO by NH3. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Understanding roles of Ce on hydrothermal stability of Cu-SSZ-52 catalyst for selective catalytic reduction of NO with NH3. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Daya R, Trandal D, Menon U, Deka DJ, Partridge WP, Joshi SY. Kinetic Model for the Reduction of Cu II Sites by NO + NH 3 and Reoxidation of NH 3-Solvated Cu I Sites by O 2 and NO in Cu-SSZ-13. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohil Daya
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Dylan Trandal
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Unmesh Menon
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Dhruba J. Deka
- Oak Ridge National Laboratory, 2360 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - William P. Partridge
- Oak Ridge National Laboratory, 2360 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - Saurabh Y. Joshi
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| |
Collapse
|
50
|
Deplano G, Signorile M, Crocellà V, Porcaro NG, Atzori C, Solemsli BG, Svelle S, Bordiga S. Titration of Cu(I) Sites in Cu-ZSM-5 by Volumetric CO Adsorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21059-21068. [PMID: 35482942 PMCID: PMC9100488 DOI: 10.1021/acsami.2c03370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cu-exchanged zeolites are widely studied materials because of their importance in industrial energetic and environmental processes. Cu redox speciation lies at the center of many of these processes but is experimentally difficult to investigate in a quantitative manner with regular laboratory equipment. This work presents a novel technique for this purpose that exploits the selective adsorption of CO over accessible Cu(I) sites to quantify them. In particular, isothermal volumetric adsorption measurements are performed at 50 °C on a series of opportunely pre-reduced Cu-ZSM-5 to assess the relative fraction of Cu(I); the setup is fairly simple and only requires a regular volumetric adsorption apparatus to perform the actual measurement. Repeatability tests are carried out on the measurement and activation protocols to assess the precision of the technique, and the relative standard deviation (RSD) obtained is less than 5%. Based on the results obtained for these materials, the same CO adsorption protocol is studied for the sample using infrared spectroscopy, and a good correlation is found between the results of the volumetric measurements and the absorbance of the peak assigned to the Cu(I)-CO adducts. A linear model is built for this correlation, and the molar attenuation coefficient is obtained, allowing for spectrophotometric quantification. The good sensitivity of the spectrophotometric approach and the precision and simplicity of the volumetric approach form a complementary set of tools to quantitatively study Cu redox speciation in these materials at the laboratory scale, allowing for a wide range of Cu compositions to be accurately investigated.
Collapse
Affiliation(s)
- Gabriele Deplano
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via P. Giuria 7-10125 and Via G. Quarello 15/A, 10135 Torino, TO, Italy
| | - Matteo Signorile
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via P. Giuria 7-10125 and Via G. Quarello 15/A, 10135 Torino, TO, Italy
| | - Valentina Crocellà
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via P. Giuria 7-10125 and Via G. Quarello 15/A, 10135 Torino, TO, Italy
| | - Natale Gabriele Porcaro
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via P. Giuria 7-10125 and Via G. Quarello 15/A, 10135 Torino, TO, Italy
| | - Cesare Atzori
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via P. Giuria 7-10125 and Via G. Quarello 15/A, 10135 Torino, TO, Italy
| | - Bjørn Gading Solemsli
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, NO, Norway
| | - Stian Svelle
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, NO, Norway
| | - Silvia Bordiga
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via P. Giuria 7-10125 and Via G. Quarello 15/A, 10135 Torino, TO, Italy
| |
Collapse
|