1
|
Li D, Pei L, Du W, Xiao X, Gao H, Zheng H, Gao H. Synthesis of Branched Cyclo-Olefin Copolymers Using Neutral α-Sulfonate- β-Diimine Nickel Catalyst. Molecules 2025; 30:157. [PMID: 39795213 PMCID: PMC11721484 DOI: 10.3390/molecules30010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
The homopolymerization of norbornene and the copolymerization of norbornene and ethylene were carried out using the neutral α-sulfonate-β-diimine nickel catalyst SD-Ni. The neutral α-sulfonate-β-diimine catalyst is highly active in the homopolymerization of norbornene, producing vinyl-addition polynorbornene (PNB) with a high molecular weight. The copolymerization of norbornene (NB) and ethylene (E) using the catalyst SD-Ni was also investigated. The α-sulfonate-β-diimine catalyst SD-Ni shows distinctive catalytic copolymerization properties to produce high-molecular-weight E-NB copolymers with low norbornene incorporation. Importantly, microstructure analyses confirm that the resultant E-NB copolymers are branched cyclo-olefin copolymers (COCs) with branched polyethylene units.
Collapse
Affiliation(s)
- Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China; (D.L.); (W.D.); (X.X.); (H.G.); (H.Z.)
| | - Lixia Pei
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China; (D.L.); (W.D.); (X.X.); (H.G.); (H.Z.)
| | - Xieyi Xiao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China; (D.L.); (W.D.); (X.X.); (H.G.); (H.Z.)
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China; (D.L.); (W.D.); (X.X.); (H.G.); (H.Z.)
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China; (D.L.); (W.D.); (X.X.); (H.G.); (H.Z.)
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China; (D.L.); (W.D.); (X.X.); (H.G.); (H.Z.)
| |
Collapse
|
2
|
Li X, Hu Z, Mahmood Q, Wang Y, Sohail S, Zou S, Liang T, Sun WH. Thermally stable C2-symmetric α-diimine nickel precatalysts for ethylene polymerization: semicrystalline to amorphous PE with high tensile and elastic properties. Dalton Trans 2024; 53:18193-18206. [PMID: 39450637 DOI: 10.1039/d4dt02543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In α-diimine nickel catalyst-mediated ethylene polymerization, adjusting catalytic parameters such as steric and electronic factors, as well as spectator ligands, offers an intriguing approach for tailoring the thermal and physical properties of the resulting products. This study explores two sets of C2-symmetric α-diimine nickel complexes-nickel bromide and nickel chloride-where ortho-steric and electronic substituents, as well as nickel halide, were varied to regulate simultaneously chain walking, chain transfer, and the properties of the polymers produced. These complexes were activated in situ with Et2AlCl, resulting in exceptionally high catalytic activities (in the level of 106-107 g (PE) mol-1 (Ni) h-1) under all reaction conditions. Nickel bromide complexes, with higher ortho-steric hindrance, exhibited superior catalytic activity compared to their less hindered counterparts, whereas the reverse was observed for complexes containing chloride. Increased steric hindrance in both sets of complexes facilitated higher polymer molecular weights and promoted chain walking reactions at lower reaction temperature (40 °C), while the effect became less pronounced at higher temperature (100 °C). However, the electron-withdrawing effect of ortho-substituents hindered the rate of monomer insertion, chain propagation, and chain walking reactions, leading to the synthesis of semi-crystalline polyethylene with an exceptionally high melt temperature of 134.6 °C and a high crystallinity of up to 31.9%. Most importantly, nickel bromide complexes demonstrated significantly higher activity compared to their chloride counterparts, while the latter yielded polymers with higher molecular weights and increased melt temperatures. These high molecular weights, coupled with controlled branching degrees, resulted in polyethylenes with excellent tensile strength (up to 13.9 MPa) and excellent elastic properties (up to 81%), making them suitable for a broad range of applications.
Collapse
Affiliation(s)
- Xiaoxu Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Zexu Hu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Yizhou Wang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sunny Sohail
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Song Zou
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Wen-Hua Sun
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Rauf HS, Liu YS, Arslan M, Solanki SPS, Deydier E, Poli R, Grabow LC, Harth E. Benchtop-Stable Carbyl Iminopyridyl Ni II Complexes for Olefin Polymerization. ACS Catal 2024; 14:13136-13147. [PMID: 39263544 PMCID: PMC11385416 DOI: 10.1021/acscatal.4c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Design of catalysts for Ni-catalyzed olefin polymerization predominantly focuses on ligand design rather than the activation process when attempting to achieve a broader scope of polyolefin micro- and macrostructures. Air-stable alkyl-or aryl-functionalized NiII precatalysts were designed which eliminate the need of in situ alkylating processes and are activated solely by halide abstraction to generate the cationic complex for olefin polymerization. These complexes represent an emerging class of olefin polymerization catalysts, enabling the study of various cocatalysts forming either inner- or outer-sphere ion pairs. It is demonstrated that an organoboron cocatalyst activation produces a well-defined ion pair, which in contrast to ill-defined organoaluminum cocatalysts, can directly activate the complex by halide abstraction to yield comparatively higher molecular weight homo/copolymers. Under high ethylene pressure, broader branching densities and the gradual incorporation of short-chain branches were achieved, circumventing the need for elaborate ligand design and copolymerization with α-olefins. The underlying chain-walking mechanism and ion pair interactions were further elucidated by DFT calculations. A phenyl group on the bridging carbon functioned as a rotational barrier, producing higher molecular weight polymers compared to methyl-substituted analogs. Here, we provide a perspective to manipulate the iminopyridyl NiII system, leveraging ion pair interactions and ligand design to govern polyolefin molecular weights and microstructures.
Collapse
Affiliation(s)
- Hasaan S Rauf
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| | - Yu-Sheng Liu
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| | - Muhammad Arslan
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| | - Surya Pratap S Solanki
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, S222 Engineering Building 1, Houston, Texas 77204, United States
| | - Eric Deydier
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut Universitaire de France, 1, rue Descartes, 75231 Paris, France
| | - Lars C Grabow
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, S222 Engineering Building 1, Houston, Texas 77204, United States
| | - Eva Harth
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| |
Collapse
|
4
|
Gao L, Ren H, Hou Y, Ye L, Meng H, Liu B, Yang M. Synthesis of High-Molecular-Weight Polypropylene Elastomer by Propylene Polymerization Using α-Diimine Nickel Catalysts. Polymers (Basel) 2024; 16:2376. [PMID: 39204595 PMCID: PMC11359258 DOI: 10.3390/polym16162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The α-diimine late transition metal catalyst represents a new strategy for the synthesis of atactic polypropylene elastomer. Taking into account the properties of the material, enhancing the molecular weight of polypropylene at an elevated temperature through modifying the catalyst structure, and further increasing the activity of α-diimine catalyst for propylene polymerization, are urgent problems to be solved. In this work, two α-diimine nickel(II) catalysts with multiple hydroxymethyl phenyl substituents were synthesized and used for propylene homopolymerization. The maximum catalytic activity was 5.40 × 105 gPP/molNi·h, and the activity was still maintained above 105 gPP/molNi·h at 50 °C. The large steric hindrance of catalysts inhibited the chain-walking and chain-transfer reactions, resulting in polypropylene with high molecular weights (407~1101 kg/mol) and low 1,3-enchainment content (3.57~16.96%) in toluene. The low tensile strength (0.3~1.0 MPa), high elongation at break (218~403%) and strain recovery properties (S.R. ~50%, 10 tension cycles) of the resulting polypropylenes, as well as the visible light transmittance of approximately 90%, indicate the characteristics of the transparent elastomer.
Collapse
Affiliation(s)
- Lujie Gao
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hegang Ren
- School of Material Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yanhui Hou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Linlin Ye
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hao Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Min Yang
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
5
|
Dashti A, Ahmadi M. Recent Advances in Controlled Production of Long-Chain Branched Polyolefins. Macromol Rapid Commun 2024; 45:e2300746. [PMID: 38488683 DOI: 10.1002/marc.202300746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Polyolefins, composed of carbon and hydrogen atoms, dominate global polymer production. This stems from the wide range of physical and mechanical properties that various polyolefins can cover. Their versatile properties are largely tuned by chain microstructure, including molar mass distribution, comonomer content, and long-chain branching (LCB). Specifically, LCB imparts unique characteristics, notably enhances processability crucial for downstream applications. Tailoring LCB structural features has encouraged academic and industrial efforts, chronicle in this review from a chemistry standpoint. While encompassing post-reaction modification based traditional methods like peroxide grafting, ionizing beam irradiation, and coupling reactions, the main focus is given to catalyst-centric strategies and innovative polymerization schemes. The advent of single-site catalysts-metallocenes and late transition metals catalysts-amplifies interest in tailored chemical methods, but the progress in LCB formation flourishes via tandem catalytic systems and bimetallic catalysts under controlled reaction conditions. Specifically, the breakthrough in coordinative chain transfer polymerization unveils a novel avenue for controlled LCB synthesis by sequential chain propagation, transfer, liberation, and enchainment. This short review highlights recent approaches for the production of LCB polyolefins that can provide a roadmap crucial for researchers in academia and industry, steering their efforts toward further advancements in the production of tailored polyolefin.
Collapse
Affiliation(s)
- Arezoo Dashti
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
| | - Mostafa Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
6
|
Zhao X, Hou Y, Ye L, Zong K, An Q, Liu B, Yang M. Synthesis of α-Diimine Complex Enabling Rapidly Covalent Attachment to Silica Supports and Application of Homo-/Heterogeneous Catalysts in Ethylene Polymerization. Int J Mol Sci 2023; 24:13645. [PMID: 37686453 PMCID: PMC10487567 DOI: 10.3390/ijms241713645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
For covalent attachment-supported α-diimine catalysts, on the basis of ensuring the thermal stability and activity of the catalysts, the important problem is that the active group on the catalyst can quickly react with the support, anchoring it firmly on the support, shortening the loading time, reducing the negative impact of the support on the active centers, and further improving the polymer morphology, which makes them suitable for use in industrial polymerization temperatures. Herein, we synthesized a α-diimine nickel(II) catalyst bearing four hydroxyl substituents. The hydroxyl substituents enable the catalyst to be immobilized firmly on silica support by covalent linkage in 5-10 min. Compared with the toluene solvent system, the homogeneous catalysts show high activity and thermal stability in hexane solvent at the same conditions. Compared with homogeneous catalysts, heterogeneous catalysis leads to improvements in catalyst lifetime, polymer morphology control, catalytic activity, and the molecular weight of polyethylene (up to 679 kg/mol). The silica-supported catalysts resulted in higher melting temperatures as well as lower branching densities in polyethylenes. Even at 70 °C, the polyethylene prepared by S-CatA-2 still exhibits dispersed particle morphology, and there is no phenomenon of reactor fouling, which is suitable for industrial polymerization processes.
Collapse
Affiliation(s)
- Xiaobei Zhao
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yanhui Hou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Linlin Ye
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Kening Zong
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qingming An
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Min Yang
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
7
|
Wang C, Wang D, Xu T, Zhang Q, Fu Z. Effect of N-Aryl Para-Benzhydryl Substituent on the Thermal Stability of α-Diimine Nickel Catalyst. Macromol Rapid Commun 2023; 44:e2300221. [PMID: 37293788 DOI: 10.1002/marc.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Indexed: 06/10/2023]
Abstract
The thermal stability of α-diimine nickel catalysts has always been the focus of research. The introduction of large groups in the backbone or N-aryl ortho-position is a relatively mature solution. However, the question of whether the N-aryl bond rotation is a factor affecting the thermal stability of nickel catalysts is still open. In this work, the effects of N-aryl para-benzhydryl substitutes on catalyst thermal stability are investigated, and the results of ethylene polymerization and the factors affecting thermal stability (steric effect, electronic effect, five-membered coordination ring stability, N-aryl bond rotation, etc.) are systematically analyzed. It is believed that the introduction of large steric hindrance groups at the N-aryl para-position hinders the rotation of the N-aryl bond. This obstacle effect is beneficial to improving catalyst thermal stability, and the obstacle capacity is weakened with the increase of ortho-substituent size.
Collapse
Affiliation(s)
- Cheng Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Xinglu High-end Polyolefin Research & Development Center, Hangzhou, 310058, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310058, P. R. China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
| | - Tao Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Xinglu High-end Polyolefin Research & Development Center, Hangzhou, 310058, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310058, P. R. China
- Hangzhou Xinglu Technologies Co. Ltd., Hangzhou, 310012, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
| | - Zhisheng Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Xinglu High-end Polyolefin Research & Development Center, Hangzhou, 310058, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310058, P. R. China
| |
Collapse
|
8
|
Jiang S, Zheng Y, Oleynik IV, Yu Z, Solan GA, Oleynik II, Liu M, Ma Y, Liang T, Sun WH. N, N-Bis(2,4-Dibenzhydryl-6-cycloalkylphenyl)butane-2,3-diimine-Nickel Complexes as Tunable and Effective Catalysts for High-Molecular-Weight PE Elastomers. Molecules 2023; 28:4852. [PMID: 37375408 DOI: 10.3390/molecules28124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Four examples of N,N-bis(aryl)butane-2,3-diimine-nickel(II) bromide complexes, [ArN=C(Me)-C(Me)=NAr]NiBr2 (where Ar = 2-(C5H9)-4,6-(CHPh2)2C6H2 (Ni1), Ar = 2-(C6H11)-4,6-(CHPh2)2C6H2 (Ni2), 2-(C8H15)-4,6-(CHPh2)2C6H2 (Ni3) and 2-(C12H23)-4,6-(CHPh2)2C6H2 (Ni4)), disparate in the ring size of the ortho-cycloalkyl substituents, were prepared using a straightforward one-pot synthetic method. The molecular structures of Ni2 and Ni4 highlight the variation in the steric hindrance of the ortho-cyclohexyl and -cyclododecyl rings exerted on the nickel center, respectively. By employing EtAlCl2, Et2AlCl or MAO as activators, Ni1-Ni4 displayed moderate to high activity as catalysts for ethylene polymerization, with levels falling in the order Ni2 (cyclohexyl) > Ni1 (cyclopentyl) > Ni4 (cyclododecyl) > Ni3 (cyclooctyl). Notably, cyclohexyl-containing Ni2/MAO reached a peak level of 13.2 × 106 g(PE) of (mol of Ni)-1 h-1 at 40 °C, yielding high-molecular-weight (ca. 1 million g mol-1) and highly branched polyethylene elastomers with generally narrow dispersity. The analysis of polyethylenes with 13C NMR spectroscopy revealed branching density between 73 and 104 per 1000 carbon atoms, with the run temperature and the nature of the aluminum activator being influential; selectivity for short-chain methyl branches (81.8% (EtAlCl2); 81.1% (Et2AlCl); 82.9% (MAO)) was a notable feature. The mechanical properties of these polyethylene samples measured at either 30 °C or 60 °C were also evaluated and confirmed that crystallinity (Xc) and molecular weight (Mw) were the main factors affecting tensile strength and strain at break (εb = 353-861%). In addition, the stress-strain recovery tests indicated that these polyethylenes possessed good elastic recovery (47.4-71.2%), properties that align with thermoplastic elastomers (TPEs).
Collapse
Affiliation(s)
- Shu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuting Zheng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Irina V Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Zhixin Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ivan I Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Ming Liu
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Dashti A, Ahmadi M, Haddadi-Asl V, Ahmadjo S, Mortazavi SMM. Tandem coordinative chain transfer polymerization for long chain branched Polyethylene: The role of chain displacement. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Yu J, Zhang D, Wang Q. Rigid Triptycene-Based Di- and Trinuclear Salicylaldiminato Nickel Cooperative Polymerization Catalysts. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Jueqin Yu
- Department of Chemistry, Fudan University, 200438 Shanghai, People’s Republic of China
| | - Dao Zhang
- Department of Chemistry, Fudan University, 200438 Shanghai, People’s Republic of China
| | - Quanrui Wang
- Department of Chemistry, Fudan University, 200438 Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Zheng H, Pei L, Deng H, Gao H, Gao H. Electronic effects of amine-imine nickel and palladium catalysts on ethylene (co)polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Wu R, Klingler Wu W, Stieglitz L, Gaan S, Rieger B, Heuberger M. Recent advances on α-diimine Ni and Pd complexes for catalyzed ethylene (Co)polymerization: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Qasim M, Tian W, Pang W, Pan Y, Behzadi S, Chen M. Effect of Coumarin backbone in N^O type Nickel Catalyzed Olefin Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Zhang Y, Zhang Y, Hu X, Wang C, Jian Z. Advances on Controlled Chain Walking and Suppression of Chain Transfer in Catalytic Olefin Polymerization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Eagan JM, Padilla-Vélez O, O’Connor KS, MacMillan SN, LaPointe AM, Coates GW. Chain-Straightening Polymerization of Olefins to Form Polar Functionalized Semicrystalline Polyethylene. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James M. Eagan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Omar Padilla-Vélez
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Kyle S. O’Connor
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Anne M. LaPointe
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
16
|
Wang C, Wang D, Fu Z, Qin Y, Zhang Q, Fan Z. Combining 1,2-diketopyracene with bulky benzhydryl-substituted anilines to obtain highly active α-diimine nickel catalysts at elevated temperature. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Synthesis of Ultra-High molecular weight polyethylene elastomers by para-tert-Butyl dibenzhydryl functionalized α-Diimine nickel catalysts at elevated temperature. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Late Transition Metal Catalysts with Chelating Amines for Olefin Polymerization. Catalysts 2022. [DOI: 10.3390/catal12090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyolefins are the most consumed polymeric materials extensively used in our daily life and are usually generated by coordination polymerization in the polyolefin industry. Olefin polymerization catalysts containing transition metal–organic compound combinations are undoubtedly crucial for the development of the polyolefin industry. The nitrogen donor atom has attracted considerable interest and is widely used in combination with the transition metal for the fine-tuning of the chemical environment around the metal center. In addition to widely reported olefin polymerization catalysts with imine and amide donors (sp2 hybrid N), late transition metal catalysts with chelating amine donors (sp3 hybrid N) for olefin polymerization have never been reviewed. In this review paper, we focus on late transition metal (Ni, Pd, Fe, and Co) catalysts with chelating amines for olefin polymerization. A variety of late transition metal catalysts bearing different neutral amine donors are surveyed for olefin polymerization, including amine–imine, amine–pyridine, α-diamine, and [N, N, N] tridentate ligands with amine donors. The relationship between catalyst structure and catalytic performance is also encompassed. This review aims to promote the design of late transition metal catalysts with unique chelating amine donors for the development of high-performance polyolefin materials.
Collapse
|
19
|
Zheng Y, Jiang S, Liu M, Yu Z, Ma Y, Solan GA, Zhang W, Liang T, Sun WH. High molecular weight PE elastomers through 4,4-difluorobenzhydryl substitution in symmetrical α-diimino-nickel ethylene polymerization catalysts. RSC Adv 2022; 12:24037-24049. [PMID: 36200024 PMCID: PMC9435601 DOI: 10.1039/d2ra04321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The following family of N,N-diaryl-2,3-dimethyl-1,4-diazabutadienes, ArN[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]NAr (Ar = 2,6-Me2-4-{CH(4-FC6H4)2}C6H2L1, 2-Me-6-Et-4-{CH(4-FC6H4)2}C6H2L2, 2,4-{CH(4-FC6H4)2}2-6-MeC6H2L3, 2,4-{CH(4-FC6H4)2}2-6-EtC6H2L4, 2,4-{CH(4-FC6H4)2}2-6-iPrC6H2L5), each incorporating para-substituted 4,4-difluorobenzhydryl groups but differing in the ortho-pairing, have been synthesized and used as precursors to their respective nickel(ii) bromide complexes, Ni1-Ni5. Compound characterization has been achieved through a combination of FT-IR, multinuclear NMR spectroscopy (1H, 13C, 19F) and elemental analysis. In addition, L1, Ni1 and Ni5 have been structurally characterized with Ni1 and Ni5 revealing similarly distorted tetrahedral geometries about nickel but with distinct differences in the steric protection offered by the ortho-substituents. All nickel complexes, under suitable activation, showed high activity for ethylene polymerization with a predilection towards forming branched high molecular weight polyethylene with narrow dispersity. Notably the most sterically bulky Ni5, under activation with either EtAlCl2, Et2AlCl or EASC, was exceptionally active (0.9-1.0 × 107 g of PE per (mol of Ni) per h) at an operating temperature of 40 °C. Furthermore, the polyethylene generated displayed molecular weights close to one million g mol-1 (M w range: 829-922 kg mol-1) with high branching densities (86-102/1000 carbons) and a selectivity for short chain branches (% Me = 94.3% (EtAlCl2), 87.2% (Et2AlCl), 87.7% (EASC)). Further analysis of the mechanical properties of the polymers produced at 40 °C and 50 °C using Ni5 highlighted the key role played by crystallinity (X c) and molecular weight (M w) on tensile strength (σ b) and elongation at break (ε b). In addition, stress-strain recovery tests reveal these high molecular weight polymers to exhibit characteristics of thermoplastic elastomers (TPEs).
Collapse
Affiliation(s)
- Yuting Zheng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Ming Liu
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhixin Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Wenjuan Zhang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
20
|
Hu X, Kang X, Jian Z. Suppression of Chain Transfer at High Temperature in Catalytic Olefin Polymerization. Angew Chem Int Ed Engl 2022; 61:e202207363. [PMID: 35695787 DOI: 10.1002/anie.202207363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Abstract
Living polymerization by suppressing chain transfer is a very useful method for achieving precise molecular weight and structure control. However, the suppression of chain transfer at high temperatures is extremely challenging in any catalytic polymerization. This has been a severe limitation for catalytic olefin polymerization, which is one of the most important chemical reactions. Here, we report the unprecedented living polymerization of ethylene at 130 °C, with a narrow molecular weight distribution range of 1.04 to 1.08. This is a significant increase in the reaction temperature. Tailor-made α-diimine nickel catalysts that exhibit both the steric shielding and fluorine effects play an essential role in this breakthrough. These nickel catalysts are even active at 200 °C, and enable the formation of semi-crystalline, ultrahigh-molecular-weight polyethylene at 150 °C. Mechanistic insights into the key chain transfer reaction are elucidated by density functional theory calculations.
Collapse
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
21
|
Hu X, Kang X, Jian Z. Suppression of Chain Transfer at High Temperature in Catalytic Olefin Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Xiaohui Kang
- College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
22
|
Effect of alkylaluminum structure and aggregation state on the micro-kinetics of ethylene polymerization catalyzed by α-diimine nickel complex. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Lu W, Liao Y, Dai S. Facile Access to Ultra-Highly Branched Polyethylenes Using Hybrid “Sandwich” Ni(II) and Pd(II) Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Wang X, Xu M, Zhang S, Qasim M, Chen M. Fluorine Effect on α-Imino-ketone- and Phenoxyiminato Nickel-Catalyzed Ethylene Homo- and Copolymerization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoyue Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China
| | - Mengli Xu
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China
| | - Shaojie Zhang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China
| | - Muhammad Qasim
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Min Chen
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
25
|
Zheng H, Li Y, Du W, Cheung CS, Li D, Gao H, Deng H, Gao H. Unprecedented Square-Planar α-Diimine Dibromonickel Complexes and Their Ethylene Polymerizations Modulated by Ni–Phenyl Interactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Du W, Zheng H, Li Y, Cheung CS, Li D, Gao H, Deng H, Gao H. Neutral Tridentate α-Sulfonato-β-diimine Nickel Catalyst for (Co)polymerizations of Ethylene and Acrylates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
27
|
Alternating copolymerization of carbon monoxide and vinyl arenes using [N,N] bidentate palladium catalysts. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Liu L, Wang F, Zhang C, Liu H, Wu G, Zhang X. Thermally robust α-diimine nickel and cobalt complexes for Cis-1,4 selective 1,3-butadiene polymerizations. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Xia J, Kou S, Mu H, Jian Z. Slow-chain-walking polymerization of ethylene and highly chain-straightening polymerization of 1-hexene to access semicrystalline polyolefins. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Guo KP. The crystal structure of {N
1,N
2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2
N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C64H64Br2Cl4N2Ni, monoclinic, C2/c (no. 15), a = 31.9723(18) Å, b = 11.9826(6) Å, c = 18.4722(11) Å, β = 125.038(2)°, V = 5794.4(6) Å3, Z = 4, R
gt
(F) = 0.0536, wR
ref
(F
2) = 0.1640, T = 273.15 K.
Collapse
Affiliation(s)
- Kun-Peng Guo
- Luohe Medical College , Luohe , Henan 462002 , P. R. China
| |
Collapse
|
31
|
|
32
|
Linear/branched Block Polyethylene Produced by α-Diimine Nickel(II) Catalyst and Bis(phenoxy-imine) Zirconium Binary Catalyst System in the Presence of Diethyl Zinc. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Xing Y, Yu H, Wang L, Wang N, Zhu L, Liang R. The Formation of Polyethylene Using
α
‐Diiminonickel Precatalyst in the Presence of CoCp
2
and AgOTf. ChemistrySelect 2021. [DOI: 10.1002/slct.202101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yusheng Xing
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| | - Nan Wang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| | - Lei Zhu
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| | - Ruixue Liang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
34
|
Yu F, Li P, Xu M, Xu G, Na Y, Zhang S, Wang F, Tan C. Iminopyridyl ligands bearing polyethylene glycol unit for nickel catalyzed ethylene polymerization. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Zhu L, Yu H, Wang L, Xing Y, Bilal Ul Amin. Advances in the Synthesis of Polyolefin Elastomers with “Chain-walking” Catalysts and Electron Spin Resonance Research of Related Catalytic Systems. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, polyolefin elastomers play an increasingly important role in industry.
The late transition metal complex catalysts, especially α-diimine Ni(II) and α-diimine
Pd(II) complex catalysts, are popular “chain-walking” catalysts. They can prepare polyolefin
with various structures, ranging from linear configuration to highly branched configuration.
Combining the “chain-walking” characteristic with different polymerization strategies, polyolefins
with good elasticity can be obtained. Among them, olefin copolymer is a common
way to produce polyolefin elastomers. For instance, strictly defined diblock or triblock copolymers
with excellent elastic properties were synthesized by adding ethylene and α-olefin
in sequence. As well as the incorporation of polar monomers may lead to some unexpected
improvement. Chain shuttling polymerization can generate multiblock copolymers in one pot
due to the interaction of the catalysts with chain shuttling agent. Furthermore, when regarding ethylene as the sole
feedstock, owing to the “oscillation” of the ligands of the asymmetric catalysts, polymers with stereo-block structures
can be generated. Generally, the elasticity of these polyolefins mainly comes from the alternately crystallineamorphous
block structures, which is closely related to the characteristic of the catalytic system. To improve performance
of the catalysts and develop excellent polyolefin elastomers, research on the catalytic mechanism is of great
significance. Electron spin resonance (ESR), as a precise method to detect unpaired electron, can be applied to study
transition metal active center. Therefore, the progress on the exploration of the valence and the proposed configuration
of catalyst active center in the catalytic process by ESR is also reviewed.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yusheng Xing
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
|
37
|
Duan X, Zhang X, Liu T, Bai S, Tong H, Chao J, Sun W. Structural diversity in substituted aminosilyl‐aminopyridinate metal (Zr or Fe) complexes: Synthesis, structures, and ethylene polymerization. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xin‐E Duan
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Xiao‐Xia Zhang
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Tian Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Sheng‐Di Bai
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Hongbo Tong
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Jian‐Bin Chao
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
38
|
Mote NR, Gaikwad SR, Khopade KV, Gonnade RG, Chikkali SH. Controlled di-lithiation enabled synthesis of phosphine-sulfonamide ligands and implications in ethylene oligomerization. Dalton Trans 2021; 50:3717-3723. [PMID: 33634816 DOI: 10.1039/d1dt00093d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyst design for ethylene oligomerization has attracted significant interest. Herein, we report the synthesis of phosphine-sulfonamide-derived palladium complexes and examine their performance in ethylene oligomerization. Arresting a dilithiation intermediate of N-(2-bromophenyl)-4-methylbenzenesulfonamide (1) at -84 °C selectively produced N-(2-(bis(2-methoxyphenyl)phosphanyl)phenyl)-4-methylbenzenesulfonamide (L1A). However, the same reaction at -41 °C delivered a different ligand; 2-(bis(2-methoxyphenyl)phosphanyl)-4-methyl-N-phenylbenzenesulfonamide (L2A). The generality of our strategy has been demonstrated by preparing N-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (L1B) and 2-(diphenylphosphanyl)-4-methyl-N-phenylbenzenesulfonamide (L2B). Subsequently, L1A and L1B were treated with a palladium precursor to yield 5-membered complexes C1 and C2, respectively. In contrast, L2A upon treatment with palladium produced a 6-membered metal complex C3. Thus, a small library of 7 palladium complexes (C1-C7) were synthesized by varying the donor moiety (pyridine, DMSO, and acetonitrile). The identity of palladium complexes was unambiguously ascertained using a combination of spectroscopic and analytical methods, including single-crystal X-ray diffraction. The performance of the complexes C1-C7 was investigated in ethylene oligomerization and almost all of them were found to be active. The resultant ethylene oligomers were characterized using 1H and 13C NMR, MALDI-ToF-MS, and GPC. Detailed screening of reaction parameters revealed 100 °C and 40 bars ethylene to be optimal conditions. Complex C5 outperformed other complexes and produced ethylene oligomers with a molecular weight of 1000-1900 g mol-1.
Collapse
Affiliation(s)
- Nilesh R Mote
- Polyolefin Laboratory, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. and Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Shahaji R Gaikwad
- Polyolefin Laboratory, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. and Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Kishor V Khopade
- Polyolefin Laboratory, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. and Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Rajesh G Gonnade
- Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India
| | - Samir H Chikkali
- Polyolefin Laboratory, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. and Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| |
Collapse
|
39
|
Synthesis of Ethylene/1-Octene Copolymers with Ultrahigh Molecular Weights by Zr and Hf Complexes Bearing Bidentate NN Ligands with the Camphyl Linker. Catalysts 2021. [DOI: 10.3390/catal11020276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultrahigh molecular weight polyethylene (UHMWPE) is a class of high-performance engineering plastics, exhibiting a unique set of properties and applications. Although many advances have been achieved in recent years, the synthesis of UHMWPE is still a great challenge. In this contribution, a series of zirconium and hafnium complexes, [2,6-(R1)2-4-R2-C6H2-N-C(camphyl)=C(camphyl)-N-2,6-(R1)2-4-R2-C6H2]MMe2(THF) (1-Zr: R1 = Me, R2 = H, M = Zr; 2-Zr: R1 = Me, R2 = Me, M = Zr; 1-Hf: R1 = Me, R2 = H, M = Hf; 2-Hf: R1 = Me, R2 = Me, M = Hf), bearing bidentate NN ligands with the bulky camphyl backbone were synthesized by the stoichiometric reactions of α-diimine ligands with MMe4 (M = Hf or Zr). All Zr and Hf metal complexes were analyzed using 1H and 13C NMR spectroscopy, and the molecular structures of complexes 1-Zr and 1-Hf were determined by single-crystal X-ray diffraction, revealing that the original α-diimine ligand was selectively reduced into the ene-diamido form and generated an 1,3-diaza-2-metallocyclopentene ring in the metal complexes. Zr complexes 1-Zr and 2-Zr showed moderate activity (up to 388 kg(PE)·mol−1(M)·h−1), poor copolymerization ability, but unprecedented molecular weight capability toward ethylene/1-octene copolymerization. Therefore, copolymers with ultrahigh molecular weights (>600 or 337 × 104 g∙mol−1) were successfully synthesized by 1-Zr or 2-Zr, respectively, with the borate cocatalyst [Ph3C][B(C6F5)4]. Surprisingly, Hf complexes 1-Hf and 2-Hf showed negligible activity under otherwise identical conditions, revealing the great influence of metal centers on catalytic performances.
Collapse
|
40
|
Design and synthesis of base-metal nickel(II) based catalysts: studies on nearly selective formation of 1-butene from ethylene. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Xiao Z, Zhong L, Du C, Du W, Zheng H, Cheung CS, Wang L, Gao H. Unprecedented Steric and Positioning Effects of Comonomer Substituents on α-Diimine Palladium-Catalyzed Vinyl Arene/CO Copolymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zefan Xiao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Liu Zhong
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingzhi Wang
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
42
|
Wang B, Liu H, Zhang C, Tang T, Zhang X. Propylene homopolymerization and copolymerization with ethylene by acenaphthene-based α-diimine nickel complexes to access EPR-like elastomers. Polym Chem 2021. [DOI: 10.1039/d1py00923k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of acenaphthene-based α-diimine nickel complexes were synthesized and subsequently used for accessing branched EPR-like elastomers with different compositions and chain structures.
Collapse
Affiliation(s)
- Beibei Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, PR China
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Heng Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Chunyu Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Tao Tang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Xuequan Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
43
|
|
44
|
Hai Z, Lu Z, Li S, Cao ZY, Dai S. The synergistic effect of rigid and flexible substituents on insertion polymerization with α-diimine nickel and palladium catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00812a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The introduction of flexible cycloalkyl groups greatly enhanced the chain growth in the Ni(ii) catalytic system and facilitated the insertion of polar monomers in the Pd(ii) catalytic system.
Collapse
Affiliation(s)
- Zijuan Hai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Zhou Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Shuaikang Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
45
|
Du C, Chu H, Xiao Z, Zhong L, Zhou Y, Qin W, Liang G, Gao H. Alternating Vinylarene–Carbon Monoxide Copolymers: Simple and Efficient Nonconjugated Luminescent Macromolecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongling Chu
- Daqing Petrochemical Research Center of Petrochina, Daqing 163714, China
| | - Zefan Xiao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Liu Zhong
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yusheng Zhou
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Qin
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Guodong Liang
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
46
|
Tian B, Li J, Li Z, Xu N, Yao G, Zhang N, Dong W, Liu Y, Di M. Synergistic lignin construction of a long-chain branched polypropylene and its properties. RSC Adv 2020; 10:38120-38127. [PMID: 35515157 PMCID: PMC9057192 DOI: 10.1039/d0ra06889f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/20/2020] [Indexed: 01/18/2023] Open
Abstract
In light of current environmental pressures (referring to its destruction) and the consumption of petrochemical resources, the substitution of chemicals products with renewable natural substances has attracted extensive interest. In this paper, a synergistically constructed lignin polypropylene matrix composite with long-chain branched characteristics was prepared by a pre-irradiation and melt blending method. The effects of lignin on the crystallization, rheological behavior, foaming and aging properties of polypropylene were studied. Differential scanning calorimetry and polarized light microscopy results show that lignin undergoes heterophasic nucleation in a polypropylene matrix; rheological studies show that lignin promotes the formation of a heterogeneous polypropylene network, and thus polypropylene exhibits long-chain branching features; nucleation and a network structure endow the polypropylene-based composites with uniform cell size, thin cell walls, and a foaming ratio of 5–44 times; at the same time, a large number of hindered phenols in lignin can capture free radicals to improve the aging properties of the polypropylene. This research will help to convert industrial waste into functional composite materials. Polypropylene with long chain branching behavior was constructed by lignin, which foaming property and polarity were improved.![]()
Collapse
Affiliation(s)
- Bo Tian
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University Harbin 150040 China .,Institute of Technical Physics, Heilongjiang Academy of Science Harbin 150086 P. R. China
| | - Jinfeng Li
- Institute of Technical Physics, Heilongjiang Academy of Science Harbin 150086 P. R. China
| | - Zhigang Li
- Institute of Technical Physics, Heilongjiang Academy of Science Harbin 150086 P. R. China
| | - Ningdi Xu
- Harbin Institute of Technology Harbin P. R. China
| | - Gang Yao
- Institute of Technical Physics, Heilongjiang Academy of Science Harbin 150086 P. R. China
| | - Nan Zhang
- Institute of Technical Physics, Heilongjiang Academy of Science Harbin 150086 P. R. China
| | - Wei Dong
- Institute of Radiation Medicine, China Academy of Medical Science, Peking Union Medical College Tianjin 300192 P. R. China
| | - Yuguang Liu
- Institute of Technical Physics, Heilongjiang Academy of Science Harbin 150086 P. R. China
| | - Mingwei Di
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University Harbin 150040 China
| |
Collapse
|
47
|
Yang XW, Li DH, Song AX, Liu FS. "Bulky-Yet-Flexible" α-Diimine Palladium-Catalyzed Reductive Heck Cross-Coupling: Highly Anti-Markovnikov-Selective Hydroarylation of Alkene in Air. J Org Chem 2020; 85:11750-11765. [PMID: 32808522 DOI: 10.1021/acs.joc.0c01509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To pursue a highly regioselective and efficient reductive Heck reaction, a series of moisture- and air-stable α-diimine palladium precatalysts were rationally designed, readily synthesized, and fully characterized. The relationship between the structures of the palladium complexes and the catalytic properties was investigated. It was revealed that the"bulky-yet-flexible"palladium complexes allowed highly anti-Markovnikov-selective hydroarylation of alkenes with (hetero)aryl bromides under aerobic conditions. Further synthetic application of the present protocol could provide rapid and straightforward access to functional and biologically active molecules.
Collapse
Affiliation(s)
- Xu-Wen Yang
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| |
Collapse
|
48
|
Li P, Li X, Behzadi S, Xu M, Yu F, Xu G, Wang F. Living Chain-Walking (Co)Polymerization of Propylene and 1-Decene by Nickel α-Diimine Catalysts. Polymers (Basel) 2020; 12:E1988. [PMID: 32878280 PMCID: PMC7564000 DOI: 10.3390/polym12091988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Homo- and copolymers of propylene and 1-decene were synthesized by controlled chain-walking (co)polymerization using phenyl substituted α-diimine nickel complexes activated with modified methylaluminoxane (MMAO). This catalytic system was found to polymerize propylene in a living fashion to furnish high molecular weight ethylene-propylene (EP) copolymers. The copolymerizations proceeded to give high molecular weight P/1-decene copolymers with narrow molecular weight distribution (Mw/Mn ≈ 1.2), which indicated a living nature of copolymerization at room temperature. The random copolymerization results indicated the possibility of precise branched structure control, depending on the polymerization temperature and time.
Collapse
Affiliation(s)
- Pei Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Xiaotian Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Shabnam Behzadi
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Mengli Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Fan Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Guoyong Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Fuzhou Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| |
Collapse
|
49
|
He X, Duan Y, Guo Y, Wang K, Wu B, Wen Y, Zou J, Zhu C, Huang S, Chen D. Hexacoordinated nickel catalysts containing salicylaldbenzhydrylimine ligand and tetrahydrofuran heterocycle: High catalytic activity and high 1-hexene insert ratios for norbornene (Co)polymerization. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Zhang RF, Hou YH, Wei XL, Zhao DD, Cui MM, Zhai FF, Li XL, Liu BY, Yang M. Thermostable α-Diimine Nickel Complexes with Substituents on Acenaphthequinone-backbone for Ethylene Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2430-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|