1
|
Singh A, Ahmed N. Nickel(II)-hydrazineylpyridine catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones via a Fenton free radical reaction. Org Biomol Chem 2025; 23:1689-1695. [PMID: 39791225 DOI: 10.1039/d4ob01840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported via a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by 1H, 13C-NMR, GC-MS, and HRMS data. Hydrogen peroxide used in the reaction facilitates Ni-catalyst oxidation state variations by a disproportionate reaction, which makes the catalyst recyclable up to 4 catalytic cycles without loss of activity. The method has high functional group tolerance with both aliphatic and aromatic ketones and alcohols. The catalyst structure was fully characterized using IR, UV, EPR and XPS analyses. The thermal stability of the catalyst was up to 290 °C, which was confirmed via a TGA study. The green metrics of the reaction showed 90%atom economy with a turnover frequency of 165.
Collapse
Affiliation(s)
- Apurva Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Naseem Ahmed
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
2
|
Wang P, Zhu L, Wang J, Tao Z. Catalytic Asymmetric α-Alkylation of Ketones with Unactivated Alkyl Halides. J Am Chem Soc 2023; 145:27211-27217. [PMID: 38061195 DOI: 10.1021/jacs.3c09614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A catalytic, enantioselective method for direct α-alkylation of ketones with unactivated alkyl halides is realized by employing an α-enolizable ketone in a nickel-catalyzed C(sp3)-C(sp3) cross-coupling reaction. The key to the success is attributed to a unique bimetallic ligand. A variety of acyclic ketones and unactivated alkyl iodides can serve as suitable substrates under mild conditions to generate chiral ketones with α-quaternary carbon stereocenters in high yields with good enantioselectivities. A range of transformations based on the ketone moiety are also demonstrated to show the potential application of this method. Preliminary mechanistic studies support a dinickel-catalyzed cross-coupling mechanism.
Collapse
Affiliation(s)
- Peigen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Liangwei Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jingwen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhonglin Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
3
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|
4
|
Fang L, Fan S, Wu W, Li T, Zhu J. Ruthenium-catalyzed room-temperature coupling of α-keto sulfoxonium ylides and cyclopropanols for δ-diketone synthesis. Chem Commun (Camb) 2021; 57:7386-7389. [PMID: 34223842 DOI: 10.1039/d1cc02576g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous transition metal-catalyzed synthesis processes of δ-diketones are plagued by the high cost of the rhodium catalyst and harsh reaction conditions. Herein a low-cost, room temperature ruthenium catalytic method is developed based on the coupling of α-keto sulfoxonium ylides with cyclopropanols. The mild protocol features a broad substrate scope (47 examples) and a high product yield (up to 99%). Mechanistic studies argue against a radical pathway and support a cyclopropanol ring opening, sulfoxonium ylide-derived carbenoid formation, migratory insertion C-C bond formation pathway.
Collapse
Affiliation(s)
- Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Tielei Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Zhan ZZ, He JP, Jiang PB, Zhang MM, Wang HS, Luo N, Huang GS. Cu(II)‐Catalyzed Synthesis of 2,3,6‐Trisubstituted Pyridines from Saturated Ketone and Alkynones/1,3‐Dicarbonyl Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Z. Zhan
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Jian P. He
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Peng B. Jiang
- Zhe Jiang Shaoxing Zhejiang Pharmaceutical Co., Ltd. No. 58 Changhe Road, Binhai New City Shaoxing City Zhejiang Province China
| | - Ming M. Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - He S. Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Guo S. Huang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| |
Collapse
|
6
|
Bai D, Liu S, Chen J, Yu Y, Wang M, Chang J, Lan Y, Li X. Mechanistic studies on nickel-catalyzed enantioselective [3 + 2] annulation for γ-butenolide synthesis via C–C activation of diarylcyclopropenones. Org Chem Front 2021. [DOI: 10.1039/d1qo00322d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Detailed mechanistic studies on Ni-catalyzed C–C activation of cyclopropenones, and enantioselective [3 + 2] annulation with α-CF3 enones or 1,2-diones toward the efficient synthesis of γ-butenolides.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Song Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies
| | - Junyan Chen
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Yanjiang Yu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Manman Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Yu Lan
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|
7
|
Pareek M, Sunoj RB. Mechanistic insights into rhodium-catalyzed enantioselective allylic alkylation for quaternary stereogenic centers. Chem Sci 2020; 12:2527-2539. [PMID: 34164021 PMCID: PMC8179253 DOI: 10.1039/d0sc04959j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Installing quaternary stereogenic carbon is an arduous task of contemporary importance in the domain of asymmetric catalysis. To this end, an asymmetric allylic alkylation of α,α-disubstituted aldehydes by using allyl benzoate in the presence of Wilkinson's catalyst [Rh(Cl)(PPh3)3], (R)-BINOL–P(OMe) as the external ligand, and LiHMDS as the base has been reported to offer high enantioselectivity. The mechanistic details of this important reaction remain vague, which prompted us to undertake a detailed density functional theory (SMD(THF)/B3LYP-D3) investigation on the nature of the potential active catalyst, energetic features of the catalytic cycle, and the origin of high enantioselectivity. We note that a chloride displacement from the native Rh-phosphine [Rh(Cl)(PPh3)3] by BINOL–P(OMe) phosphite and an ensuing MeCl elimination can result in the in situ formation of a Rh-phosphonate [Rh(BINOL–P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O)(PPh3)3]. A superior energetic span (δE) noted with such a Rh-phosphonate suggests that it is likely to serve as an active catalyst. The uptake of allyl benzoate by the active catalyst followed by the turnover determining C–O bond oxidative addition furnishes a Rh-π-allyl intermediate, which upon interception by (Z)-Li-enolate (derived from α,α-disubstituted aldehyde) in the enantiocontrolling C–C bond generates a quaternary stereogenic center. The addition of the re prochiral face of the (Z)-Li-enolate to the Rh-bound allyl moiety leading to the R enantiomer of the product is found to be 2.4 kcal mol−1 more preferred over the addition through its si face. The origin of the stereochemical preference for the re face addition is traced to improved noncovalent interactions (NCIs) and less distortion in the enantiocontrolling C–C bond formation transition state than that in the si face addition. Computed enantioselectivity (96%) is in very good agreement with the experimental value (92%), so is the overall activation barrier (δE of 17.1 kcal mol−1), which is in conformity with room temperature reaction conditions. The origin of high enantioselectivity in the formation of quaternary stereogenic carbon.![]()
Collapse
Affiliation(s)
- Monika Pareek
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
8
|
Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier JF, Mashima K. Asymmetric Allylic Alkylation of β-Ketoesters via C–N Bond Cleavage of N-Allyl-N-methylaniline Derivatives Catalyzed by a Nickel–Diphosphine System. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Jingzhao Xia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Evgueni Kirillov
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kosuke Higashida
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Koya Shoji
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Valentin Boiteau
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jean-François Carpentier
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
9
|
Yu G, Wang P, Bao X, Wang Y. Computational Insights into the Divergent Regioselectivities for Nickel‐Catalyzed Dicarbofunctionalization of Allyl Moiety of N‐Allyl‐2‐aminopyrimidine. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guan‐Fu Yu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Ping Wang
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Xiaoguang Bao
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Yong Wang
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
10
|
Zhang L, Jiang B, Chen Y, Lv JF, Feng WC. A Computational Study on the Reaction Mechanisms of Nickel-Catalyzed Diarylation of Alkenes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lei Zhang
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| | - Bo Jiang
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| | - Yu Chen
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
- Department of Chemistry; School of Science; Tianjin University; 300354 Tianjin P. R. China
| | - Jia-Fei Lv
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| | - Wen-Chao Feng
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| |
Collapse
|
11
|
Li X, Li SJ, Wang Y, Wang Y, Qu LB, Li Z, Wei D. Insights into NHC-catalyzed oxidative α-C(sp3)–H activation of aliphatic aldehydes and cascade [2 + 3] cycloaddition with azomethine imines. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00526a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The NHC catalyst is identified to promote [2 + 3] cycloaddition by avoiding the poor FMO overlap mode in theory.
Collapse
Affiliation(s)
- Xue Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Shi-Jun Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yanyan Wang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P.R. China
| | - Ling-Bo Qu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Zhongjun Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|