1
|
Golio N, Sen I, Yu X, Kondratyuk P, Gellman AJ. H 2-D 2 Exchange Activity and Electronic Structure of Ag x Pd 1-x Alloy Catalysts Spanning Composition Space. ACS Catal 2024; 14:11014-11025. [PMID: 39050898 PMCID: PMC11264212 DOI: 10.1021/acscatal.4c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Many computational studies of catalytic surface reaction kinetics have demonstrated the existence of linear scaling relationships between physical descriptors of catalysts and reaction barriers on their surfaces. In this work, the relationship between catalyst activity, electronic structure, and alloy composition was investigated experimentally using a Ag x Pd1-x Composition Spread Alloy Film (CSAF) and a multichannel reactor array that allows measurement of steady-state reaction kinetics at 100 alloy compositions simultaneously. Steady-state H2-D2 exchange kinetics were measured at atmospheric pressure on Ag x Pd1-x catalysts over a temperature range of 333-593 K and a range of inlet H2 and D2 partial pressures. X-ray photoelectron spectroscopy (XPS) was used to characterize the CSAF by determining the local surface compositions and the valence band electronic structure at each composition. The valence band photoemission spectra showed that the average energy of the valence band, ε̅v, shifts linearly with composition from -6.2 eV for pure Ag to -3.4 eV for pure Pd. At all reaction conditions, the H2-D2 exchange activity was found to be highest on pure Pd and gradually decreased as the alloy was diluted with Ag until no activity was observed for compositions with x Pd < 0.58. Measured H2-D2 exchange rates across the CSAF were fit using the Dual Subsurface Hydrogen (2H') mechanism to extract estimates for the activation energy barriers to dissociative adsorption, ΔE ads ‡, associative desorption, ΔE des ‡, and the surface-to-subsurface diffusion energy, ΔE ss, as a function of alloy composition, x Pd. The 2H' mechanism predicts ΔE ads ‡ = 0-10 kJ/mol, ΔE des ‡ = 30-65 kJ/mol, and ΔE ss = 20-30 kJ/mol for all alloy compositions with x Pd ≥ 0.64, including for the pure Pd catalyst (i.e., x Pd = 1). For these Pd-rich catalysts, ΔE des ‡ and ΔE ss appeared to increase by ∼5 kJ/mol with decreasing x Pd. However, due to the coupling of kinetic parameters in the 2H' mechanism, we are unable to exclude the possibility that the kinetic parameters predicted when x Pd ≥ 0.64 are identical to those predicted for pure Pd. This suggests that H2-D2 exchange occurs only on bulk-like Pd domains, presumably due to the strong interactions between H2 and Pd. In this case, the decrease in catalytic activity with decreasing x Pd can be explained by a reduction in the availability of surface Pd at high Ag compositions.
Collapse
Affiliation(s)
- Nicholas Golio
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Irem Sen
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaoxiao Yu
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Petro Kondratyuk
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew J. Gellman
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Marcella N, Lim JS, Płonka AM, Yan G, Owen CJ, van der Hoeven JES, Foucher AC, Ngan HT, Torrisi SB, Marinkovic NS, Stach EA, Weaver JF, Aizenberg J, Sautet P, Kozinsky B, Frenkel AI. Decoding reactive structures in dilute alloy catalysts. Nat Commun 2022; 13:832. [PMID: 35149699 PMCID: PMC8837610 DOI: 10.1038/s41467-022-28366-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.
Collapse
Affiliation(s)
- Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Anna M Płonka
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Nebojsa S Marinkovic
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Boris Kozinsky
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Robert Bosch LLC, Research and Technology Center, Cambridge, MA, 02139, USA.
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|