1
|
Mitrichev I, Blacker AJ, Chapman M, Kawakami Y, Vasilev M, Goltz G, Podobedova A, Borissova A, Koltsova E. DFT-Assisted Microkinetic Study of Transfer Hydrogenation over Homogeneous and Immobilized Cp*Ir Complexes. J Phys Chem A 2025; 129:2548-2557. [PMID: 40025832 DOI: 10.1021/acs.jpca.4c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
DFT calculations were done to investigate the kinetic mechanism of benzaldehyde transfer hydrogenation using [Cp*IrCl2]2 complexes in isopropyl alcohol in the presence of potassium tert-butoxide. Predicted energy barriers provide evidence that the inner-sphere (IS) mechanism (effective barrier 53.0 kJ/mol) is favored over the outer-sphere (OS) and Meerwein-Pondorf-Verley (MPV) mechanisms. Reaction kinetics was studied using both homogeneous and immobilized Cp*Ir complexes as catalysts. A mathematical model was developed to simulate the transfer hydrogenation of benzaldehyde on these catalysts, accounting for possible mass transfer limitations for the immobilized catalyst. A microkinetic model was constructed using both our density functional theory calculations and fitting of the kinetic parameters of catalyst activation and deactivation reactions. The simulation results predict that only about a quarter of Ir immobilized complexes are involved in the reaction, and this is the main reason for the observed higher activity of the homogeneous catalyst. The activity of the immobilized catalyst was found to be related to the hydride species concentration, which is a function of the base concentration. The results suggest that the amount of base has a drastic effect on the immobilized catalyst activity.
Collapse
Affiliation(s)
- Ivan Mitrichev
- Information Computer Technologies Department, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - A John Blacker
- Institute of Process Research and Development, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Michael Chapman
- Institute of Process Research and Development, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Yuji Kawakami
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Mikhail Vasilev
- Information Computer Technologies Department, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - Gert Goltz
- Institute of Process Research and Development, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Anna Podobedova
- Information Computer Technologies Department, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - Antonia Borissova
- Institute of Process Research and Development, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Eleonora Koltsova
- Information Computer Technologies Department, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| |
Collapse
|
2
|
Bazzoni M, Régheasse A, Caytan E, Felpin F, Giraudeau P, Bernard A, Adams RW, Morris GA, Nilsson M, Dumez J. Pure Shift NMR in Continuous Flow. Chemistry 2025; 31:e202403385. [PMID: 39431476 PMCID: PMC11711295 DOI: 10.1002/chem.202403385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Flow NMR is an expanding analytical approach with applications that include in-line analysis for process control and optimisation, and real-time reaction monitoring. The samples monitored by flow NMR are typically mixtures that yield complex 1D 1H spectra. "Pure shift" NMR is a powerful approach to simplifying 1H NMR spectra, but its standard implementation is not compatible with continuous flow because of interference between sample motion and the position-dependent spin manipulations that are required in pure shift NMR. Here we show that pure shift NMR spectra can be successfully collected for continuously flowing samples, thanks to an adapted acquisition scheme, robust solvent suppression, and a velocity-compensation strategy. The resulting method is used to collect ultrahigh resolution reaction monitoring data. Pure shift NMR spectra are expected to benefit many applications of flow NMR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ralph W. Adams
- Department of ChemistryUniversity of ManchesterManchesterUK
| | | | | | | |
Collapse
|
3
|
Tharra P, Švejkar J, Jadhav AS, Nečas M, Dub PA, Halls MD, Švenda J. Enantioselective Transfer Hydrogenation of α-Methoxyimino-β-keto Esters. J Org Chem 2024; 89:12902-12911. [PMID: 39213600 PMCID: PMC11421019 DOI: 10.1021/acs.joc.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
α-Methoxyimino-β-keto esters are reported to undergo highly enantioselective catalytic transfer hydrogenation using the Noyori-Ikariya complex RuCl(p-cymene)[(S,S)-Ts-DPEN] in a mixture of formic acid-triethylamine and dimethylformamide at 25 °C. The experimental study performed on over 25 substrates combined with computational analysis revealed that a Z-configured methoxyimino group positioned alpha to a ketone carbonyl leads to higher reactivity and mostly excellent enantioselectivity within this substrate class. Density functional theory calculations of competing transition states were used in rationalizing the origins of enantioselectivity and the possible role of the methoxyimino group in the reaction outcome.
Collapse
Affiliation(s)
- Prabhakara
R. Tharra
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| | - Jiří Švejkar
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Abhijeet S. Jadhav
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Pavel A. Dub
- Schrödinger,
Inc., San Diego, California 92121, United States
| | - Mathew D. Halls
- Schrödinger,
Inc., San Diego, California 92121, United States
| | - Jakub Švenda
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| |
Collapse
|
4
|
Coverdale JPC, Bedford RA, Carter OWL, Cao S, Wills M, Sadler PJ. In-cell Catalysis by Tethered Organo-Osmium Complexes Generates Selectivity for Breast Cancer Cells. Chembiochem 2024; 25:e202400374. [PMID: 38785030 DOI: 10.1002/cbic.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Anticancer agents that exhibit catalytic mechanisms of action offer a unique multi-targeting strategy to overcome drug resistance. Nonetheless, many in-cell catalysts in development are hindered by deactivation by endogenous nucleophiles. We have synthesised a highly potent, stable Os-based 16-electron half-sandwich ('piano stool') catalyst by introducing a permanent covalent tether between the arene and chelated diamine ligand. This catalyst exhibits antiproliferative activity comparable to the clinical drug cisplatin towards triple-negative breast cancer cells and can overcome tamoxifen resistance. Speciation experiments revealed Os to be almost exclusively albumin-bound in the extracellular medium, while cellular accumulation studies identified an energy-dependent, protein-mediated Os accumulation pathway, consistent with albumin-mediated uptake. Importantly, the tethered Os complex was active for in-cell transfer hydrogenation catalysis, initiated by co-administration of a non-toxic dose of sodium formate as a source of hydride, indicating that the Os catalyst is delivered to the cytosol of cancer cells intact. The mechanism of action involves the generation of reactive oxygen species (ROS), thus exploiting the inherent redox vulnerability of cancer cells, accompanied by selectivity for cancerous cells over non-tumorigenic cells.
Collapse
Affiliation(s)
- J P C Coverdale
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - R A Bedford
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - O W L Carter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - S Cao
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - M Wills
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - P J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Sarkar A, Dong G, Quaglia-Motta J, Sackett K. Flow-NMR as a Process-Monitoring Tool for mRNA IVT Reaction. J Pharm Sci 2024; 113:900-905. [PMID: 38008177 DOI: 10.1016/j.xphs.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Messenger RNA (mRNA) based vaccines were instrumental in accelerating the end of the SARS-CoV-2 pandemic and are being aggressively developed as prophylaxes for a range of viral diseases. The swift adoption of mRNA-based therapeutics has also left open vast areas of opportunity for improving the development of mRNA-based drugs. One such area with immense potential focuses on the mRNA drug substance production, where mRNA is generated by a cell-free reaction called in vitro transcription (IVT). Process analytical technologies (PAT) are integral to the pharmaceutical industry and are necessary to facilitate agile process optimization and enhance process quality, control, and understanding. Due to the complexity and novelty inherent to the IVT reaction, there is a need for effective PAT that would provide in-depth, real-time insight into the reaction process to allow delivery of novel mRNA vaccines to patients faster in a more cost-effective way. Herein, we showcase the development of flow-nuclear magnetic resonance (flow-NMR) as a highly effective process-analytical tool for monitoring mRNA IVT reactions to support process development, optimization, and production.
Collapse
Affiliation(s)
- Aritra Sarkar
- Analytical Research and Development, Pfizer Research and Development, Eastern Point Road, Groton, CT 06340, United States of America.
| | - Guogang Dong
- Bioprocess Research and Development, Pfizer Research and Development, 1 Burtt Road, Andover, Massachusetts 01810, United States of America
| | - Jennifer Quaglia-Motta
- Bioprocess Research and Development, Pfizer Research and Development, 1 Burtt Road, Andover, Massachusetts 01810, United States of America
| | - Kelly Sackett
- Analytical Research and Development, Pfizer Research and Development, Eastern Point Road, Groton, CT 06340, United States of America.
| |
Collapse
|
6
|
Lhoste C, Bazzoni M, Bonnet J, Bernard A, Felpin FX, Giraudeau P, Dumez JN. Broadband ultrafast 2D NMR spectroscopy for online monitoring in continuous flow. Analyst 2023; 148:5255-5261. [PMID: 37740277 DOI: 10.1039/d3an01165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Flow NMR is a powerful tool to monitor chemical reactions under realistic conditions. Here, we describe ultrafast (UF) 2D NMR schemes that make it possible to acquire broadband homonuclear 2D NMR spectra in 90 seconds or less for a continuously flowing sample. An interleaved acquisition strategy is used to address the spectral width limitation of UF 2D NMR. We show how, for a flowing sample, the use of a transverse axis for spatial encoding makes it possible to achieve the very high scan-to-scan stability required for interleaved acquisition. We also describe an optimised solvent suppression strategy that is effective for interleaved acquisition in continuous flow. These developments open the way to online monitoring with flow 2D NMR at high time resolution, as we illustrate with the monitoring of an organocatalysed condensation reaction.
Collapse
Affiliation(s)
- Célia Lhoste
- Nantes Université, CNRS, CEISAM UMR6230, F-44000 Nantes, France.
| | | | - Justine Bonnet
- Nantes Université, CNRS, CEISAM UMR6230, F-44000 Nantes, France.
| | - Aurélie Bernard
- Nantes Université, CNRS, CEISAM UMR6230, F-44000 Nantes, France.
| | | | | | | |
Collapse
|
7
|
Bara‐Estaún A, Harder MC, Lyall CL, Lowe JP, Suturina E, Hintermair U. Paramagnetic Relaxation Agents for Enhancing Temporal Resolution and Sensitivity in Multinuclear FlowNMR Spectroscopy. Chemistry 2023; 29:e202300215. [PMID: 36946535 PMCID: PMC10962566 DOI: 10.1002/chem.202300215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/23/2023]
Abstract
Sensitivity in FlowNMR spectroscopy for reaction monitoring often suffers from low levels of pre-magnetisation due to limited residence times of the sample in the magnetic field. While this in-flow effect is tolerable for high sensitivity nuclei such as 1 H and 19 F, it significantly reduces the signal-to-noise ratio in 31 P and 13 C spectra, making FlowNMR impractical for low sensititvity nuclei at low concentrations. Paramagnetic relaxation agents (PRAs), which enhance polarisation and spin-lattice relaxation, could eliminate the adverse in-flow effect and improve the signal-to-noise ratio. Herein, [Co(acac)3 ], [Mn(acac)3 ], [Fe(acac)3 ], [Cr(acac)3 ], [Ni(acac)2 ]3, [Gd(tmhd)3 ] and [Cr(tmhd)3 ] are investigated for their effectiveness in improving signal intensity per unit time in FlowNMR applications under the additional constraint of chemical inertness towards catalytically active transition metal complexes. High-spin Cr(III) acetylacetonates emerged as the most effective compounds, successfully reducing 31 P T1 values four- to five-fold at PRA concentrations as low as 10 mM without causing adverse line broadening. Whereas [Cr(acac)3 ] showed signs of chemical reactivity with a mixture of triphenylphosphine, triphenylphosphine oxide and triphenylphosphate over the course of several hours at 80° C, the bulkier [Cr(tmhd)3 ] was stable and equally effective as a PRA under these conditions. Compatibility with a range of representative transition metal complexes often used in homogeneous catalysis has been investigated, and application of [Cr(tmhd)3 ] in significantly improving 1 H and 31 P{1 H} FlowNMR data quality in a Rh-catalysed hydroformylation reaction has been demonstrated. With the PRA added, 13 C relaxation times were reduced more than six-fold, allowing quantitative reaction monitoring of substrate consumption and product formation by 13 C{1 H} FlowNMR spectroscopy at natural abundance.
Collapse
Affiliation(s)
- Alejandro Bara‐Estaún
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUnited Kingdom
- Dynamic Reaction Monitoring FacilityUniversity of Bath, Claverton DownBathBA2 7AYUnited Kingdom
| | - Marie C. Harder
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUnited Kingdom
- Dynamic Reaction Monitoring FacilityUniversity of Bath, Claverton DownBathBA2 7AYUnited Kingdom
| | - Catherine L. Lyall
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUnited Kingdom
- Dynamic Reaction Monitoring FacilityUniversity of Bath, Claverton DownBathBA2 7AYUnited Kingdom
| | - John P. Lowe
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUnited Kingdom
- Dynamic Reaction Monitoring FacilityUniversity of Bath, Claverton DownBathBA2 7AYUnited Kingdom
| | - Elizaveta Suturina
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUnited Kingdom
| | - Ulrich Hintermair
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUnited Kingdom
- Dynamic Reaction Monitoring FacilityUniversity of Bath, Claverton DownBathBA2 7AYUnited Kingdom
- Institute for SustainabilityUniversity of BathBathBA2 7AYUnited Kingdom
| |
Collapse
|
8
|
Yan C, Cowie M, Howcutt C, Wheelhouse KMP, Hodnett NS, Kollie M, Gildea M, Goodfellow MH, Reid M. Computer vision for non-contact monitoring of catalyst degradation and product formation kinetics. Chem Sci 2023; 14:5323-5331. [PMID: 37234891 PMCID: PMC10208035 DOI: 10.1039/d2sc05702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/27/2023] [Indexed: 08/24/2023] Open
Abstract
We report a computer vision strategy for the extraction and colorimetric analysis of catalyst degradation and product-formation kinetics from video footage. The degradation of palladium(ii) pre-catalyst systems to form 'Pd black' is investigated as a widely relevant case study for catalysis and materials chemistries. Beyond the study of catalysts in isolation, investigation of Pd-catalyzed Miyaura borylation reactions revealed informative correlations between colour parameters (most notably ΔE, a colour-agnostic measure of contrast change) and the concentration of product measured by off-line analysis (NMR and LC-MS). The breakdown of such correlations helped inform conditions under which reaction vessels were compromised by air ingress. These findings present opportunities to expand the toolbox of non-invasive analytical techniques, operationally cheaper and simpler to implement than common spectroscopic methods. The approach introduces the capability of analyzing the macroscopic 'bulk' for the study of reaction kinetics in complex mixtures, in complement to the more common study of microscopic and molecular specifics.
Collapse
Affiliation(s)
- Chunhui Yan
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Megan Cowie
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Calum Howcutt
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | | | | | - Martin Kollie
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Martin Gildea
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Martin H Goodfellow
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Marc Reid
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| |
Collapse
|
9
|
Wu W, Fan S, Wu X, Fang L, Zhu J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J Org Chem 2023; 88:1945-1962. [PMID: 36705660 DOI: 10.1021/acs.joc.2c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition metal catalysis has revolutionized modern synthetic chemistry for its diverse modes of coordination reactivity. However, this versatility in reactivity is also the predominant cause of catalyst deactivation, a persisting issue that can significantly compromise its synthetic value. Homeostatic catalysis, a catalytic process that can sustain its productive catalytic cycle even when chemically disturbed, is proposed herein as an effective tactic to address the challenge. In particular, a cobalt homeostatic catalysis process has been developed for the water-tolerant coupling of enaminones and oxadiazolones to quinazolinones. Dynamic covalent bonding serves as a mechanistic handle for the preferred buffering of water onto enaminone and reverse exchange by a released secondary amine, thus securing reversible entry into cobalt's dormant and active states for productive catalysis. Through this homeostatic catalysis mode, a broad structural scope has been achieved for quinazolinones, enabling further elaboration into distinct pharmaceutically active agents.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Yang W, Filonenko GA, Pidko EA. Performance of homogeneous catalysts viewed in dynamics. Chem Commun (Camb) 2023; 59:1757-1768. [PMID: 36683401 PMCID: PMC9910057 DOI: 10.1039/d2cc05625a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effective assessment of catalytic performance is the foundation for the rational design and development of new catalysts with superior performance. The ubiquitous screening/optimization studies use reaction yields as the sole performance metric in an approach that often neglects the complexity of the catalytic system and intrinsic reactivities of the catalysts. Using an example of hydrogenation catalysis, we examine the transient behavior of catalysts that are often encountered in activation, deactivation and catalytic turnover processes. Each of these processes and the reaction environment in which they take place are gradually shown to determine the real-time catalyst speciation and the resulting kinetics of the overall catalytic reaction. As a result, the catalyst performance becomes a complex and time-dependent metric defined by multiple descriptors apart from the reaction yield. This behaviour is not limited to hydrogenation catalysis and affects various catalytic transformations. In this feature article, we discuss these catalytically relevant descriptors in an attempt to arrive at a comprehensive depiction of catalytic performance.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Georgy A. Filonenko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
11
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
12
|
Tkachenko NV, Rublev P, Dub PA. The Source of Proton in the Noyori–Ikariya Catalytic Cycle. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolay V. Tkachenko
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Pavel Rublev
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
13
|
Tadiello L, Drexler HJ, Beweries T. Low-Field Flow 31P NMR Spectroscopy for Organometallic Chemistry: On-Line Analysis of Highly Air-Sensitive Rhodium Diphosphine Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Tadiello
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hans-Joachim Drexler
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
14
|
Marchand A, Mishra R, Bernard A, Dumez J. Online Reaction Monitoring with Fast and Flow‐Compatible Diffusion NMR Spectroscopy. Chemistry 2022; 28:e202201175. [DOI: 10.1002/chem.202201175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Rituraj Mishra
- Nantes Université CNRS CEISAM UMR 6230 44000 Nantes France
| | | | | |
Collapse
|
15
|
Khamis N, Clarkson GJ, Wills M. Heterocycle-containing Noyori-Ikariya catalysts for asymmetric transfer hydrogenation of ketones. Dalton Trans 2022; 51:13462-13469. [PMID: 35994090 DOI: 10.1039/d2dt02411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a range of N-(heterocyclesulfonyl)-functionalised Noyori-Ikariya catalysts is described. The complexes were prepared through a short sequence from C2-symmetric 1,2-diphenylethylene-1,2-diamine (DPEN) and were characterised by a range of methods including X-ray crystallography. The complexes were active catalysts for the asymmetric transfer hydrogenation (ATH) of a range of acetophenone derivatives, giving products of high ee in most cases, with notably good results for ortho-substituted acetophenones.
Collapse
Affiliation(s)
- Noha Khamis
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK. .,Department of Chemistry, Faculty of science, University of Alexandria, Alexandria, Egypt
| | - Guy J Clarkson
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
16
|
Single-Chain Chiral Ru-Cu Star Polymers for Highly Efficient Catalytic Aqueous Asymmetric Transfer Hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J Am Chem Soc 2022; 144:8129-8137. [PMID: 35476423 PMCID: PMC9100671 DOI: 10.1021/jacs.2c00548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homogeneously catalyzed
reactions often make use of additives and
promotors that affect reactivity patterns and improve catalytic performance.
While the role of reaction promotors is often discussed in view of
their chemical reactivity, we demonstrate that they can be involved
in catalysis indirectly. In particular, we demonstrate that promotors
can adjust the thermodynamics of key transformations in homogeneous
hydrogenation catalysis and enable reactions that would be unfavorable
otherwise. We identified this phenomenon in a set of well-established
and new Mn pincer catalysts that suffer from persistent product inhibition
in ester hydrogenation. Although alkoxide base additives do not directly
participate in inhibitory transformations, they can affect the equilibrium
constants of these processes. Experimentally, we confirm that by varying
the base promotor concentration one can control catalyst speciation
and inflict substantial changes to the standard free energies of the
key steps in the catalytic cycle. Despite the fact that the latter
are universally assumed to be constant, we demonstrate that reaction
thermodynamics and catalyst state are subject to external control.
These results suggest that reaction promotors can be viewed as an
integral component of the reaction medium, on its own capable of improving
the catalytic performance and reshaping the seemingly rigid thermodynamic
landscape of the catalytic transformation.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tejas Y Kalavalapalli
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Taras A Khvorost
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, Berlin D-14195, Germany
| | - Evgeny A Uslamin
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
Hao W, Joe CL, Ayers S, Darù A, Daley RA, Chen JS, Domanski M, Schmidt MA, Blackmond DG. Ru-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes and Substrate-Mediated H/D Exchange. ACS Catal 2022; 12:1150-1160. [PMID: 36386561 PMCID: PMC9648516 DOI: 10.1021/acscatal.1c05061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A highly efficient and enantioselective asymmetric hydrogenation catalyzed by Ru-DTBM-segphos is reported for a broad range of pyridine-pyrroline tri-substituted alkenes. Kinetic, spectroscopic, and computational studies suggest that addition of H2 is rate-determining and that alkene insertion is the enantio-determining step. These studies also reveal an intriguing Ru-catalyzed H/D exchange process that is facilitated by the substrate at room temperature and low pressure where hydrogenation activity is suppressed. These studies lead to a mechanistic proposal that further defines the roles of hydrogen gas, Ru-H species, and protic solvents in this catalytic system.
Collapse
Affiliation(s)
- Wei Hao
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Candice L. Joe
- Chemical Development, Bristol Myers Squibb Corp., New Brunswick, NJ 08903 USA
| | - Sloan Ayers
- Chemical Development, Bristol Myers Squibb Corp., New Brunswick, NJ 08903 USA
| | - Andrea Darù
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Ryan A. Daley
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Jason S. Chen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
- Automated Synthesis Facility, Scripps Research, La Jolla, CA 92037, USA
| | - Michal Domanski
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Michael A. Schmidt
- Chemical Development, Bristol Myers Squibb Corp., New Brunswick, NJ 08903 USA
| | | |
Collapse
|
19
|
Gerzon G, Sheng Y, Kirkitadze M. Process Analytical Technologies - Advances in bioprocess integration and future perspectives. J Pharm Biomed Anal 2022; 207:114379. [PMID: 34607168 DOI: 10.1016/j.jpba.2021.114379] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Process Analytical Technology (PAT) instruments include analyzers capable of measuring physical and chemical process parameters and key attributes with the goal of optimizing process controls. PAT in the form of a probe or sensor is designed to integrate within the pharmaceutical manufacturing line and is coupled with computing equipment to perform chemometric modeling for result interpretation and multilayer statistical control of processes. PAT solutions are intended for understanding bioprocesses with a goal to control quality at all stages of product manufacturing and achieve quality by design (QbD). The goal of PAT implementation is to promote real-time release of products to decrease the cycle time and cost of production. This review focuses on the applications of PAT solutions at different stages of the manufacturing process for vaccine production, the advantages, challenges at present state, and the vision of the future development of biopharmaceutical industries.
Collapse
Affiliation(s)
- Gabriella Gerzon
- Department of Biology, Faculty of Science, York University, Toronto, Canada; Analytical Sciences, Sanofi Pasteur, Toronto, Canada
| | - Yi Sheng
- Department of Biology, Faculty of Science, York University, Toronto, Canada
| | | |
Collapse
|
20
|
Bara-Estaun A, Lyall C, Lowe JP, Pringle PG, Kamer P, Franke R, Hintermair U. Mapping Catalyst Activation, Turnover Speciation and Deactivation in Rh/PPh3-catalysed Olefin Hydroformylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00312k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report new insights into the fate of the precious metal during hydroformylation catalysis of 1-hexene with Rh/PPh3 complexes using multi-nuclear operando FlowNMR spectroscopy. By applying selectively excited 1H and...
Collapse
|
21
|
Taylor CJ, Manson JA, Clemens G, Taylor BA, Chamberlain TW, Bourne RA. Modern advancements in continuous-flow aided kinetic analysis. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although kinetic analysis has traditionally been conducted in a batch vessel, continuous-flow aided kinetic analysis continues to swell in popularity.
Collapse
Affiliation(s)
- Connor J. Taylor
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Jamie A. Manson
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Graeme Clemens
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Brian A. Taylor
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Thomas W. Chamberlain
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard A. Bourne
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Thomlinson IA, Davidson M, Lyall C, Lowe JP, Hintermair U. Fast and Accurate Diffusion NMR Acquisition in Continuous Flow. Chem Commun (Camb) 2022; 58:8242-8245. [DOI: 10.1039/d2cc03054c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FlowNMR spectroscopy has become a popular and powerful technique for online reaction monitoring. DOSY NMR is an established technique for obtaining information about diffusion rates and molecular size on static...
Collapse
|
23
|
Kumah RT, Vijayan P, Ojwach SO. Carboxamide carbonyl-ruthenium(ii) complexes: detailed structural and mechanistic studies in the transfer hydrogenation of ketones. NEW J CHEM 2022. [DOI: 10.1039/d1nj05657c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The organo-carboxamide carbonyl-ruthenium(ii) complexes displayed moderate catalytic activities in the transfer hydrogenation of a broad spectrum of ketones.
Collapse
Affiliation(s)
- Robert T. Kumah
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Paranthaman Vijayan
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Stephen O. Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
24
|
Berry DBG, Clegg I, Codina A, Lyall CL, Lowe JP, Hintermair U. Convenient and accurate insight into solution-phase equilibria from FlowNMR titrations. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00123c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution phase titrations are made easy by multi-nuclear FlowNMR spectroscopy with automated, continuous titre addition to give accurate insights into Brønsted acid/base, hydrogen bonding, Lewis acid/base and metal/ligand binding equilibria under native conditions.
Collapse
Affiliation(s)
- Daniel B. G. Berry
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ian Clegg
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Anna Codina
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Catherine L. Lyall
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - John P. Lowe
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY Bath, UK
| |
Collapse
|
25
|
Chandra S, Kelm O, Albold U, Hazari AS, Urankar D, Košmrlj J, Sarkar B. Iridium Azocarboxamide Complexes: Variable Coordination Modes, C–H Activation, Transfer Hydrogenation Catalysis, and Mechanistic Insights. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shubhadeep Chandra
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Ola Kelm
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Uta Albold
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Arijit Singha Hazari
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Damijana Urankar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| |
Collapse
|
26
|
Hall AR, Berry DBG, Crossley JN, Codina A, Clegg I, Lowe JP, Buchard A, Hintermair U. Does the Configuration at the Metal Matter in Noyori-Ikariya Type Asymmetric Transfer Hydrogenation Catalysts? ACS Catal 2021; 11:13649-13659. [PMID: 34777911 PMCID: PMC8576814 DOI: 10.1021/acscatal.1c03636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Indexed: 12/04/2022]
Abstract
Noyori-Ikariya type [(arene)RuCl(TsDPEN)] (TsDPEN, sulfonated diphenyl ethylenediamine) complexes are widely used C=O and C=N reduction catalysts that produce chiral alcohols and amines via a key ruthenium-hydride intermediate that determines the stereochemistry of the product. Whereas many details about the interactions of the pro-chiral substrate with the hydride complex and the nature of the hydrogen transfer from the latter to the former have been investigated over the past 25 years, the role of the stereochemical configuration at the stereogenic ruthenium center in the catalysis has not been elucidated so far. Using operando FlowNMR spectroscopy and nuclear Overhauser effect spectroscopy, we show the existence of two diastereomeric hydride complexes under reaction conditions, assign their absolute configurations in solution, and monitor their interconversion during transfer hydrogenation catalysis. Configurational analysis and multifunctional density functional theory (DFT) calculations show the λ-(R,R)S Ru configured [(mesitylene)RuH(TsDPEN)] complex to be both thermodynamically and kinetically favored over its λ-(R,R)R Ru isomer with the opposite configuration at the metal. Computational analysis of both diastereomeric catalytic manifolds show the major λ-(R,R)S Ru configured [(mesitylene)RuH(TsDPEN)] complex to dominate asymmetric ketone reduction catalysis with the minor λ-(R,R)R Ru [(mesitylene)RuH(TsDPEN)] stereoisomer being both less active and less enantioselective. These findings also hold true for a tethered catalyst derivative with a propyl linker between the arene and TsDPEN ligands and thus show enantioselective transfer hydrogenation catalysis with Noyori-Ikariya complexes to proceed via a lock-and-key mechanism.
Collapse
Affiliation(s)
- Andrew
M. R. Hall
- Centre
for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Daniel B. G. Berry
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Jaime N. Crossley
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Anna Codina
- Bruker
UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom
| | - Ian Clegg
- Bruker
UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom
| | - John P. Lowe
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Antoine Buchard
- Centre
for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Ulrich Hintermair
- Centre
for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
27
|
Bara-Estaún A, Lyall CL, Lowe JP, Pringle PG, Kamer PCJ, Franke R, Hintermair U. Multi-nuclear, high-pressure, operando FlowNMR spectroscopic study of Rh/PPh 3 - catalysed hydroformylation of 1-hexene. Faraday Discuss 2021; 229:422-442. [PMID: 34075917 DOI: 10.1039/c9fd00145j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hydroformylation of 1-hexene with 12 bar of 1 : 1 H2/CO in the presence of the catalytic system [Rh(acac)(CO)2]/PPh3 was successfully studied by real-time multinuclear high-resolution FlowNMR spectroscopy at 50 °C. Quantitative reaction progress curves that yield rates as well as chemo- and regioselectivities have been obtained with varying P/Rh loadings. Dissolved H2 can be monitored in solution to ensure true operando conditions without gas limitation. 31P{1H} and selective excitation 1H pulse sequences have been periodically interleaved with 1H FlowNMR measurements to detect Rh-phosphine intermediates during the catalysis. Stopped-flow experiments in combination with diffusion measurements and 2D heteronuclear correlation experiments showed the known tris-phosphine complex [RhH(CO)(PPh3)3] to generate rapidly exchanging isomers of the bis-phosphine complex [Rh(CO)2(PPh3)2] under CO pressure that directly enter the catalytic cycle. A new mono-phosphine acyl complex has been identified as an in-cycle reaction intermediate.
Collapse
Affiliation(s)
- Alejandro Bara-Estaún
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK. and Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Catherine L Lyall
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK. and Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - John P Lowe
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK. and Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Paul G Pringle
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Paul C J Kamer
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29A, 18059 Rostock, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Straße 1, 45772 Marl, Germany
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK. and Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK and Centre for Sustainable & Circular Technologies, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
28
|
Kolcsár VJ, Szőllősi G. Chitosan as a chiral ligand and organocatalyst: preparation conditions–property–catalytic performance relationships. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01674a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Properties of chitosan prepared by alkaline deacetylation of chitin under various conditions were correlated with their performance as ligands or organocatalysts in asymmetric catalytic reactions.
Collapse
Affiliation(s)
| | - György Szőllősi
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary
| |
Collapse
|
29
|
|
30
|
Pokochueva E, Burueva DB, Kovtunova LM, Bukhtiyarov AV, Gladky AY, Kovtunov KV, Koptyug IV, Bukhtiyarov VI. Mechanistic in situ investigation of heterogeneous hydrogenation over Rh/TiO2 catalysts: selectivity, pairwise route and catalyst nature. Faraday Discuss 2021; 229:161-175. [DOI: 10.1039/c9fd00138g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a catalyst with the highest selectivity toward pairwise hydrogen addition of 7% among supported metal catalysts, found as a result of variation of Rh/TiO2 catalyst preparation procedures.
Collapse
Affiliation(s)
- Ekaterina V. Pokochueva
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
| | - Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
| | - Larisa M. Kovtunova
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Andrey V. Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | | | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Boreskov Institute of Catalysis SB RAS
| | - Valerii I. Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
31
|
Doherty S, Knight JG, Alshaikh H, Wilson J, Waddell PG, Wills C, Dixon CM. Arene‐Immobilized Ru(II)/TsDPEN Complexes: Synthesis and Applications to the Asymmetric Transfer Hydrogenation of Ketones. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Simon Doherty
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Julian G. Knight
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Hind Alshaikh
- Department of Chemistry Science and Arts College King Abdulaziz University Rabigh Campus Jeddah 21911 Saudi Arabia
| | - James Wilson
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Paul G. Waddell
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Corinne Wills
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Casey M. Dixon
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
32
|
Gediya SK, Clarkson GJ, Wills M. Asymmetric Transfer Hydrogenation: Dynamic Kinetic Resolution of α-Amino Ketones. J Org Chem 2020; 85:11309-11330. [DOI: 10.1021/acs.joc.0c01438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shweta K. Gediya
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Guy J. Clarkson
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
33
|
Friebel A, von Harbou E, Münnemann K, Hasse H. Online process monitoring of a batch distillation by medium field NMR spectroscopy. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Jacquemmoz C, Giraud F, Dumez JN. Online reaction monitoring by single-scan 2D NMR under flow conditions. Analyst 2020; 145:478-485. [DOI: 10.1039/c9an01758e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-scan 2D NMR based on spatial encoding can be used to monitor chemical reactions with a flow unit in realistic reaction conditions.
Collapse
Affiliation(s)
| | - François Giraud
- ICSN
- CNRS UPR2301
- Univ. Paris Sud
- Université Paris-Saclay
- 91190 Gif sur Yvette
| | | |
Collapse
|
35
|
Friebel A, von Harbou E, Münnemann K, Hasse H. Reaction Monitoring by Benchtop NMR Spectroscopy Using a Novel Stationary Flow Reactor Setup. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Friebel
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Erik von Harbou
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
36
|
Hejazifar M, Pálvölgyi ÁM, Bitai J, Lanaridi O, Bica-Schröder K. Asymmetric Transfer Hydrogenation in Thermomorphic Microemulsions Based on Ionic Liquids. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahtab Hejazifar
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Ádám Márk Pálvölgyi
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jacqueline Bitai
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Olga Lanaridi
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Katharina Bica-Schröder
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
37
|
Berry DBG, Codina A, Clegg I, Lyall C, Lowe JP, Hintermair U. Insight into catalyst speciation and hydrogen co-evolution during enantioselective formic acid-driven transfer hydrogenation with bifunctional ruthenium complexes from multi-technique operando reaction monitoring. Faraday Discuss 2019; 220:45-57. [PMID: 31524899 DOI: 10.1039/c9fd00060g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Operando spectroscopy shows a transition from dehydrogenation to hydrogen transfer during the reaction, and allows measuring optimal conditions for maximum rate and efficiency.
Collapse
Affiliation(s)
| | | | | | - Catherine L. Lyall
- Department of Chemistry
- University of Bath
- BA2 7AY Bath
- UK
- Dynamic Reaction Monitoring Facility
| | - John P. Lowe
- Department of Chemistry
- University of Bath
- BA2 7AY Bath
- UK
- Dynamic Reaction Monitoring Facility
| | - Ulrich Hintermair
- Department of Chemistry
- University of Bath
- BA2 7AY Bath
- UK
- Dynamic Reaction Monitoring Facility
| |
Collapse
|
38
|
Structural Diversity in Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation Reactions. TOP ORGANOMETAL CHEM 2019. [DOI: 10.1007/3418_2019_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|