1
|
Chen Y, Cheng M, Jin L, Yang H, Ma S, Lin Z, Dai G, Liu X. Heterogeneous activation of self-generated H 2O 2 by Pd@UiO-66(Zr) for trimethoprim degradation: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121868. [PMID: 39032257 DOI: 10.1016/j.jenvman.2024.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 μM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Collapse
Affiliation(s)
- Yijun Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Meina Cheng
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Long Jin
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Meixin Environmental Technology Co., Ltd., Suzhou, 215500, Jiangsu Province, China.
| | - Hailiang Yang
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Sanjian Ma
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China.
| |
Collapse
|
2
|
Poryvaev AS, Efremov AA, Alimov DV, Smirnova KA, Polyukhov DM, Sagdeev RZ, Jacoutot S, Marque SRA, Fedin MV. Nanoscale solvent organization in metal-organic framework ZIF-8 probed by EPR of flexible β-phosphorylated nitroxides. Chem Sci 2024; 15:5268-5276. [PMID: 38577353 PMCID: PMC10988587 DOI: 10.1039/d3sc05724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) draw increasing attention as nanoenvironments for chemical reactions, especially in the field of catalysis. Knowing the specifics of MOF cavities is decisive in many of these cases; yet, obtaining them in situ remains very challenging. We report the first direct assessment of the apparent polarity and solvent organization inside MOF cavities using a dedicated structurally flexible spin probe. A stable β-phosphorylated nitroxide radical was incorporated into the cavities of a prospective MOF ZIF-8 in trace amounts. The spectroscopic properties of this probe depend on local polarity, structuredness, stiffness and cohesive pressure and can be precisely monitored by Electron Paramagnetic Resonance (EPR) spectroscopy. Using this approach, we have demonstrated experimentally that the cavities of bare ZIF-8 are sensed by guest molecules as highly non-polar inside. When various alcohols fill the cavities, remarkable self-organization of solvent molecules is observed leading to a higher apparent polarity in MOFs compared to the corresponding bulk alcohols. Accounting for such nanoorganization phenomena can be crucial for optimization of chemical reactions in MOFs, and the proposed methodology provides unique routes to study MOF cavities inside in situ, thus aiding in their various applications.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
| | - Aleksandr A Efremov
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Dmitry V Alimov
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Kristina A Smirnova
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | | | - Renad Z Sagdeev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
| | - Samuel Jacoutot
- Aix Marseille University, CNRS, UMR Avenue Escadrille Normandie-Niemen 7273 Marseille 13397 CEDEX 20 France
| | - Sylvain R A Marque
- Aix Marseille University, CNRS, UMR Avenue Escadrille Normandie-Niemen 7273 Marseille 13397 CEDEX 20 France
| | - Matvey V Fedin
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| |
Collapse
|
3
|
Zheng X, Chen X, Li X, Zhu J, Chen J, Lin F, Shen L, Xu Y, Jiang L. Designed Synthesis of Fe/Zr Bimetallic Organic Framework to Enhance the Selective Conversion of H 2S to Sulfur. Inorg Chem 2024; 63:5586-5597. [PMID: 38481363 DOI: 10.1021/acs.inorgchem.3c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of stable and effective catalysts to convert toxic H2S into high value-added sulfur is essential for production safety and environmental protection. However, the inherent defects of traditional iron- and zirconium-based catalysts, such as poor activity, high oxygen consumption, and low sulfur selectivity, limit their further developments and applications. Herein, the Fe-Zr bimetallic organic framework FeUIO-66(x) with different cubic morphologies was synthesized via a facile solvothermal method. The results indicate that the introduction of Fe not only increases the specific surface area and weak L-sites of the catalyst without changing its crystal structure, which provides enough reaction space and more active sites for the adsorption and activation of H2S, but also reduces the activation energy of the reaction, significantly promoting the selective oxidation of H2S. As a result, the as-obtained FeUIO-66(1) catalyst exhibits the highest desulfurization activity and superior durability and water resistance stability, and its H2S conversion and sulfur selectivity within 50 h are 100 and 88%, respectively. More importantly, the structure of the catalyst after the desulfurization reaction is consistent with that of the fresh counterpart. The study offers new insights into the development of effective and stable bimetallic catalysts to eliminate H2S and recycle sulfur.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
| | - Xiaoping Chen
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiaoqing Li
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Jide Zhu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
| | - Jipeng Chen
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Fengcai Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Lijuan Shen
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Yanlian Xu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
4
|
Lei L, Cao Q, Ma J, Hou F. One-Step Hydrothermal/Solvothermal Preparation of Pt/TiO 2: An Efficient Catalyst for Biobutanol Oxidation at Room Temperature. Molecules 2024; 29:1450. [PMID: 38611730 PMCID: PMC11013154 DOI: 10.3390/molecules29071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The selective oxidation of biobutanol to prepare butyric acid is an important conversion process, but the preparation of low-temperature and efficient catalysts for butanol oxidation is currently a bottleneck problem. In this work, we prepared Pt-TiO2 catalysts with different Pt particle sizes using a simple one-step hydrothermal/solvothermal method. Transmission electron microscopy and X-ray diffraction results showed that the average size of the Pt particles ranged from 1.1 nm to 8.7 nm. Among them, Pt-TiO2 with an average particle size of 3.6 nm exhibited the best catalytic performance for biobutanol. It was capable of almost completely converting butanol, even at room temperature (30 °C), with a 98.9% biobutanol conversion, 98.4% butyric acid selectivity, and a turnover frequency (TOF) of 36 h-1. Increasing the reaction temperature to 80 and 90 °C, the corresponding TOFs increased rapidly to 355 and 619 h-1. The relationship between the electronic structure of Pt and its oxidative performance suggests that the synergistic effect of the dual sites, Pt0 and Pt2+, could be the primary factor contributing to its elevated reactivity.
Collapse
Affiliation(s)
- Lijun Lei
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Qianyue Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China;
| | - Jiachen Ma
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Fengxiao Hou
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| |
Collapse
|
5
|
Goculdas T, Korathotage K, Montone C, Sadula S, Bloch ED, Vlachos DG. Synthesis of Long Chain Oxygenates via Aldol Condensation of Furfural and Acetone over Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38047592 DOI: 10.1021/acsami.3c13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Enormous efforts have been made to convert biomass to liquid fuels and products catalytically. Long molecules with a suitable structure are ideal precursors for fuels and value-added products. Here, a C21 oxygenate was synthesized for the first time in one step through aldol condensation of furfural and acetone over the amine-functionalized zirconium-based metal-organic framework (MOF), UiO-66-NH2. Structural changes of UiO-66-NH2 were investigated to improve the yield and evaluate the role of the ligand, cluster node, defectiveness, modulator, surface area, and textural properties on the product distribution. We demonstrate the possibility of making long-chain oxygenates without using vegetable oil-derived fatty acids toward 100% waste biomass-derived renewable fuels, lubricants, and surfactants.
Collapse
Affiliation(s)
- Tejas Goculdas
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Kaushalya Korathotage
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Christine Montone
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sunitha Sadula
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Gu J, Gong W, Zhang Q, Long R, Ma J, Wang X, Li J, Li J, Fan Y, Zheng X, Qiu S, Wang T, Xiong Y. Enabling direct-growth route for highly efficient ethanol upgrading to long-chain alcohols in aqueous phase. Nat Commun 2023; 14:7935. [PMID: 38040753 PMCID: PMC10692112 DOI: 10.1038/s41467-023-43773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Upgrading ethanol to long-chain alcohols (LAS, C6+OH) offers an attractive and sustainable approach to carbon neutrality. Yet it remains a grand challenge to achieve efficient carbon chain propagation, particularly with noble metal-free catalysts in aqueous phase, toward LAS production. Here we report an unconventional but effective strategy for designing highly efficient catalysts for ethanol upgrading to LAS, in which Ni catalytic sites are controllably exposed on surface through sulfur modification. The optimal catalyst exhibits the performance well exceeding previous reports, achieving ultrahigh LAS selectivity (15.2% C6OH and 59.0% C8+OH) at nearly complete ethanol conversion (99.1%). Our in situ characterizations, together with theoretical simulation, reveal that the selectively exposed Ni sites which offer strong adsorption for aldehydes but are inert for side reactions can effectively stabilize and enrich aldehyde intermediates, dramatically improving direct-growth probability toward LAS production. This work opens a new paradigm for designing high-performance non-noble metal catalysts for upgrading aqueous EtOH to LAS.
Collapse
Affiliation(s)
- Juwen Gu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qian Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangzhou, 510006, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xinyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jiayi Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yujian Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinqi Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Songbai Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangzhou, 510006, China.
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangzhou, 510006, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- Suzhou Institute for Advanced Research, Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China.
| |
Collapse
|
7
|
Xiao Y, Li J, Tan Y, Chen X, Bai F, Luo W, Ding Y. Ni-Based Hydrotalcite (HT)-Derived Cu Catalysts for Catalytic Conversion of Bioethanol to Butanol. Int J Mol Sci 2023; 24:14859. [PMID: 37834306 PMCID: PMC10573630 DOI: 10.3390/ijms241914859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Catalytic conversion of biomass-derived ethanol into n-butanol through Guerbet coupling reaction has become one of the key reactions in biomass valorization, thus attracting significant attention recently. Herein, a series of supported Cu catalysts derived from Ni-based hydrotalcite (HT) were prepared and performed in the continuous catalytic conversion of ethanol into butanol. Among the prepared catalysts, Cu/NiAlOx shows the best performance in terms of butanol selectivity and catalyst stability, with a sustained ethanol conversion of ~35% and butanol selectivity of 25% in a time-on-stream (TOS) of 110 h at 280 °C. While for the Cu/NiFeOx and Cu/NiCoOx, obvious catalyst deactivation and/or low butanol selectivity were obtained. Extensive characterization studies of the fresh and spent catalysts, i.e., X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Hydrogen temperature-programmed reduction (H2-TPR), reveal that the catalysts' deactivation is mainly caused by the support deconstruction during catalysis, which is highly dependent on the reducibility. Additionally, an appropriate acid-base property is pivotal for enhancing the product selectivity, which is beneficial for the key process of aldol-condensation to produce butanol.
Collapse
Affiliation(s)
- Yan Xiao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Jie Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Xingkun Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Fenghua Bai
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China (W.L.)
| | - Wenhao Luo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China (W.L.)
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Jing P, Zhao H, Zhang W, Liu G. Homologous RuO 2-Ru heterostructures for tandem catalytic upgrading of ethanol. Chem Commun (Camb) 2023; 59:6407-6409. [PMID: 37158015 DOI: 10.1039/d3cc01264f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The homologous RuO2-Ru heterostructure was demonstrated as an efficient tandem catalyst for upgrading ethanol. The adjacent RuO2 and Ru separately serve as aldol condensation/dehydration and dehydrogenation/hydrogenation sites for ethanol conversion.
Collapse
Affiliation(s)
- Pei Jing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Haiyang Zhao
- Jilin Yunsheng Technology Co., Ltd, Changchun 130000, China
| | - Wenxiang Zhang
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun, 130021, China
| |
Collapse
|
9
|
Wu HY, Qin YY, Xiao YH, Chen JS, Ye R, Guo R, Yao YG. Boosting Activity and Selectivity of UiO-66 through Acidity/Alkalinity Functionalization in Dimethyl Carbonate Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208238. [PMID: 36734211 DOI: 10.1002/smll.202208238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Indexed: 05/04/2023]
Abstract
The acid-base properties of supports have an enormous impact on catalytic reactions to regulate the selectivity and activity of supported catalysts. Herein, a train of Pd-X-UiO-66 (X = NO2 , NH2 , and CH3 ) catalysts with different acidity/alkalinity functional groups and encapsulated Pd(II) species is first developed, whose activities in dimethyl carbonate (DMC) catalysis are then investigated in details. Thereinto, the Pd-NO2 -UiO-66 catalyst with acidity functionalization exhibits the best catalytic behavior: the DMC selectivity stemmed from methyl nitrite (MN) is up to 68%, the conversion of CO is 73.4%. The obtained experimental results demonstrate that the NO2 group not only affected the interaction between X-UiO-66 and Pd(II) active sites but also play an indispensable role in the adsorption and activation of MN and CO, which remarkably promote the formation of the COOCH3 * intermediate and DMC product.
Collapse
Affiliation(s)
- Han-Ying Wu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ye-Yan Qin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yi-Hong Xiao
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, P. R. China
| | - Jian-Shan Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Runping Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Rong Guo
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Pd encapsulated core-shell ZIF-8/ZIF-67 for efficient oxygen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Wang Z, Yin M, Pang J, Wu P, Song L, Li X, Zheng M. Enhanced Conversion of Ethanol into n-Butanol over NiCeO 2@CNTs Catalysts with Pore Enrichment Effects. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhinuo Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning116028, China
| | - Ming Yin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Pengfei Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Lei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning116023, China
| |
Collapse
|
12
|
Messori A, Gagliardi A, Cesari C, Calcagno F, Tabanelli T, Cavani F, Mazzoni R. Advances in the homogeneous catalyzed alcohols homologation: the mild side of the Guerbet reaction. A mini-review. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Zhou BC, Li WC, Lv WL, Xiang SY, Gao XQ, Lu AH. Enhancing Ethanol Coupling to Produce Higher Alcohols by Tuning H 2 Partial Pressure over a Copper-Hydroxyapatite Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bai-Chuan Zhou
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen-Lu Lv
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shi-Yu Xiang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin-Qian Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zirconium‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022; 61:e202205077. [DOI: 10.1002/anie.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Geqian Fang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Jin‐Nian Hu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Ling‐Chan Tian
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jin‐Xia Liang
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
15
|
Sheng W, Wang X, Wang Y, Chen S, Lang X. Integrating TEMPO into a Metal–Organic Framework for Cooperative Photocatalysis: Selective Aerobic Oxidation of Sulfides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wenlong Sheng
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Chen
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zr‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective •OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Geqian Fang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Jinnian Hu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Lingchan Tian
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jinxia Liang
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jian Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Lin Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Chun Zhu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Xiaodong Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Zhongshan Road 457, Dalian, China 116023 Dalian CHINA
| |
Collapse
|
17
|
Li J, Lin L, Tan Y, Wang S, Yang W, Chen X, Luo W, Ding Y. High performing and stable Cu/NiAlOx catalysts for the continuous catalytic conversion of ethanol into butanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Li
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Lu Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Yuan Tan
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Shiyi Wang
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Wenshao Yang
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Xingkun Chen
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Wenhao Luo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Yunjie Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian National Laboratory for Clean Energy 457 zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
18
|
Karimi M, Sadeghi S, Mohebali H, Bakhti H, Mahjoub A, Heydari A. Confined-based catalyst investigation through the comparative functionalization and defunctionalization of Zr-MOF. RSC Adv 2022; 12:16358-16368. [PMID: 35754901 PMCID: PMC9168834 DOI: 10.1039/d1ra07767h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
In metal-organic frameworks, confined space as a chemical nanoreactor is as important as organocatalysis or coordinatively unsaturated metal site catalysis. In the present study, a set of mixed-ligand structures with UiO-66 architecture have been prepared. To the best of our knowledge, for the first time, structures derived by the solvothermal mixing ligand method and ultrasonic-assisted linker exchange approaches have been compared. Additionally, the relationship between the preparation method, structural properties, and catalytic efficiency of the prepared materials in the Knoevenagel condensation of aldehydes has been investigated. The prepared catalyst is very stable and can be recovered and reused for at least ten periods.
Collapse
Affiliation(s)
- Meghdad Karimi
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Samira Sadeghi
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Haleh Mohebali
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Hamzeh Bakhti
- Chemistry Department, Islamic Azad University Boroujerd Branch Borujerd Iran
| | - Alireza Mahjoub
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| |
Collapse
|
19
|
Wang J, Liu H, Chen J, Cao L, Wang C. Enabling alcohol as a hydrogen carrier using metal-organic framework-stabilized Ir-Sc bifunctional catalytic sites. Chem Commun (Camb) 2022; 58:5857-5860. [PMID: 35467674 DOI: 10.1039/d2cc01114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alcohols are attractive portable chemical carriers of hydrogen thanks to their reversible dehydrogenation, but the hydrogen release reaction is thermodynamically unfavorable. Coupling the alcohol dehydrogenation to acetal formation can shift the reaction thermodynamics for hydrogen production. Here, we stabilized Ir3+ and Sc3+ in a metal-organic framework (MOF) for tandem catalysis. The Ir3+ center bearing an α-hydroxybipyridine ligand catalyzes alcohol dehydrogenation, and the Sc3+ Lewis acid site catalyzes acetal formation that allows further dehydrogenation to form esters. The bifunctional UiO-bpyOH-IrCp-Sc catalyst effectively converts ethylene glycol to ester and H2 without producing CO.
Collapse
Affiliation(s)
- Jing Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Huichong Liu
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Jiawei Chen
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Lingyun Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Cheng Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
20
|
Ba T, Shen C, Zhang X, Liu CJ. Preparation and characterization of an edible metal-organic framework/rice wine residue composite. RSC Adv 2022; 12:14639-14643. [PMID: 35702247 PMCID: PMC9104762 DOI: 10.1039/d2ra02202h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
In this communication, using rice wine residue (RWR) as the support, an edible γ-cyclodextrin-metal-organic framework/RWR (γ-CD-MOF/RWR) composite with a macroscopic morphology was synthesized. The obtained edible composite is promising for applications in drug delivery, adsorption, food processing, and others.
Collapse
Affiliation(s)
- Teer Ba
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chenyang Shen
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Xiaoshan Zhang
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chang-Jun Liu
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
21
|
Ran Z, Liu J, Mushtaq MA, Shao X, Liu H, Du X, Hou S, Ji S. Preparation of magnetic Au/MIL-101(Cr)@SiO2@Fe3O4 catalysts and N-methylation reaction mechanism of CO2 with aniline/H2. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Liu Z, Zhuang Y, Dong L, Mu H, Tian S, Wang L, Huang A. Preparation of CeO 2/UiO-66-NH 2 Heterojunction and Study on a Photocatalytic Degradation Mechanism. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2564. [PMID: 35407896 PMCID: PMC8999730 DOI: 10.3390/ma15072564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022]
Abstract
CeO2/UiO-66-NH2 (marked as Ce/UN) composites were in-situ synthesized by a hydrothermal method. The properties, photocatalytic aspects, and degradation mechanism of Ce/UN were studied carefully. SEM results show that Ce/UN have a 3D flower-like structure, where octahedral UiO-66-NH2 nanoparticles are embedded in the two-dimensional sheet of CeO2. TEM results demonstrate that CeO2 and UiO-66-NH2 are bonded interfacially to constitute a hetero-junction construction. Data obtained by electrochemical impedance spectroscopy and fluorescence spectroscopy established that Ce/UN has less charge shift resistance and luminescence intensity than these of two pure substances. When the ratio of Ce/UN is 1:1, and the calcination temperature 400 °C is used, the degradation efficiency of RhB in photocatalysis by obtained Ce/UN is about 96%, which is much higher than in the case of CeO2 (4.5%) and UiO-66-NH2 (54%). The improved photocatalytic properties of Ce/UN may be due to the formation of hetero-junction, which is conducive for most photo-carriers and thus the interfacial charge shift efficiency is enhanced. By the free radical capture test, it can be inferred that the major active substances involved in the degradation related to photocatalysis is H+ and · O2−.
Collapse
Affiliation(s)
| | - Yanli Zhuang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (Z.L.); (H.M.); (S.T.); (L.W.); (A.H.)
| | - Limin Dong
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (Z.L.); (H.M.); (S.T.); (L.W.); (A.H.)
| | | | | | | | | |
Collapse
|
23
|
Zhao H, Li B, Zhao H, Li J, Kou J, Zhu H, Liu B, Li Z, Sun X, Dong Z. Construction of a sandwich-like UiO-66-NH 2@Pt@mSiO 2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde. J Colloid Interface Sci 2022; 606:1524-1533. [PMID: 34500155 DOI: 10.1016/j.jcis.2021.08.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. Herein, we designed the novel sandwich-like metal-organic-framework composite nanocatalyst UiO-66-NH2@Pt@mSiO2 using UiO-66-NH2@Pt as the core, and mesoporous SiO2 as the shell. The obtained UiO-66-NH2@Pt@mSiO2 catalyst shows a well-defined structure and interface, and the protection of the mSiO2 shell can efficiently prevent Pt NPs from aggregating and leaching in the reaction process. In the one-pot cascade reaction of nitroarenes and aromatic aldehydes to secondary amines, UiO-66-NH2@Pt@mSiO2 shows excellent catalytic performance due to acid catalytic sites provided by UiO-66-NH2 and Pt hydrogenation catalytic sites. Furthermore, the porous structure of the UiO-66-NH2@Pt@mSiO2 catalyst also enhances reactant diffusion and improves the reaction efficiency. This work provides a new avenue to meticulously design well-defined nanocatalysts with superior catalytic performance and stability for challenging reactions.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huacheng Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jinfang Kou
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Bing Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Zhenhua Li
- Key Laboratory of Environmental Friendly Composite Materials and Biomass in Universities of Gansu Province, Northwest Minzu University, Lanzhou 730030, PR China.
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
24
|
Choi H, Han J, Lee J. Renewable Butanol Production via Catalytic Routes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211749. [PMID: 34831504 PMCID: PMC8618088 DOI: 10.3390/ijerph182211749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Fluctuating crude oil price and global environmental problems such as global warming and climate change lead to growing demand for the production of renewable chemicals as petrochemical substitutes. Butanol is a nonpolar alcohol that is used in a large variety of consumer products and as an important industrial intermediate. Thus, the production of butanol from renewable resources (e.g., biomass and organic waste) has gained a great deal of attention from researchers. Although typical renewable butanol is produced via a fermentative route (i.e., acetone-butanol-ethanol (ABE) fermentation of biomass-derived sugars), the fermentative butanol production has disadvantages such as a low yield of butanol and the formation of byproducts, such as acetone and ethanol. To avoid the drawbacks, the production of renewable butanol via non-fermentative catalytic routes has been recently proposed. This review is aimed at providing an overview on three different emerging and promising catalytic routes from biomass/organic waste-derived chemicals to butanol. The first route involves the conversion of ethanol into butanol over metal and oxide catalysts. Volatile fatty acid can be a raw chemical for the production of butanol using porous materials and metal catalysts. In addition, biomass-derived syngas can be transformed to butanol on non-noble metal catalysts promoted by alkali metals. The prospect of catalytic renewable butanol production is also discussed.
Collapse
Affiliation(s)
- Heeyoung Choi
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea;
| | - Jeehoon Han
- School of Semiconductor and Chemical Engineering & School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (J.H.); (J.L.)
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea;
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
- Correspondence: (J.H.); (J.L.)
| |
Collapse
|
25
|
Zhang J, Shi K, Zhu Y, An Z, Wang W, Ma X, Shu X, Song H, Xiang X, He J. Interfacial Sites in Ag Supported Layered Double Oxide for Dehydrogenation Coupling of Ethanol to n-Butanol. ChemistryOpen 2021; 10:1095-1103. [PMID: 33496388 PMCID: PMC8562315 DOI: 10.1002/open.202000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
Upgrading of ethanol to n-butanol through dehydrogenation coupling has received increasing attention due to the wide application of n-butanol. But the enhancement of ethanol dehydrogenation and followed coupling to produce high selectivity to n-butanol is still highly desired. Our previous work has reported an acid-base-Ag synergistic catalysis, with Ag particles supported on Mg and Al-containing layered double oxides (Ag/MgAl-LDO). Here, Ag-LDO interfaces have been manipulated for dehydrogenation coupling of ethanol to n-butanol by tailoring the size of Ag particles and the interactions between Ag and LDO. It has been revealed that increasing the population of surface Ag sites at Ag-LDO interfaces promotes not only the dehydrogenation of ethanol to acetaldehyde but also the subsequent aldol condensation of generated acetaldehyde. A selectivity of up to 76 % to n-butanol with an ethanol conversion of 44 % has been achieved on Ag/LDO with abundant interfacial Ag sites, much superior to the state-of-the-art catalysts.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Kai Shi
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Wanning Wang
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Xiaodan Ma
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| |
Collapse
|
26
|
Fang G, Lin J, Wang X. Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wang C, Wang A, Yu Z, Wang Y, Sun Z, Kogan VM, Liu YY. Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol over Pd/UiO-66. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Cheng H, Zang C, Bian F, Jiang Y, Yang L, Dong F, Jiang H. Boosting free radical type photocatalysis over Pd/Fe-MOFs by coordination structure engineering. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00972a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of novel heterogeneous photocatalytic systems, along with a deep understanding of the relationship between the catalytic center chemical environment and the catalytic performance, is of great significance.
Collapse
Affiliation(s)
- Hongmei Cheng
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Cuicui Zang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Fengxia Bian
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Yanke Jiang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Lin Yang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu
- P. R. China
| | - Heyan Jiang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| |
Collapse
|
29
|
Zhou J, Tong Y, He Y, Tu P, Xue B, Cheng Y, Cen J, Zheng Y, Ni J, Li X. Role of Lewis Acids of MIL-101(Cr) in the Upgrading of Ethanol to n-Butanol. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.586142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The upgrading of bioethanol to n-butanol has recently been a focus of considerable attention due to the advantages of n-butanol over bioethanol as a sustainable fuel. The efficiency of this reaction is highly dependent on the development of catalysts, where understanding how catalysts perform is essential. However, traditional catalysts are normally composed of several kinds of active sites that work together synergistically in reactions, making it challenging to identify the role that individual active sites play. Herein, we synthesized three chromium-based MOFs ((MIL-101(Cr), where MIL stands for Matériaux Institut Lavoisier) with different Lewis acidities but without any basic sites. The linear relationship between Lewis acidities and their dehydration and condensation abilities suggests that there is a competition between the ethanol dehydration to diethyl ether and acetaldehyde condensation on Lewis acids. Upon the introduction of Pd, the Lewis acidity also dominates the particle size of Pd and then the dehydrogenation and hydrogenating abilities of catalysts.
Collapse
|
30
|
Hu Y, Mei Y, Lin B, Du X, Xu F, Xie H, Wang K, Zhou Y. An active and stable multifunctional catalyst with defective UiO-66 as a support for Pd over the continuous catalytic conversion of acetone and hydrogen. RSC Adv 2020; 11:48-56. [PMID: 35423013 PMCID: PMC8690181 DOI: 10.1039/d0ra09217g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 01/24/2023] Open
Abstract
The one-pot synthesis of methyl isobutyl ketone (MIBK) and methyl isobutyl methanol (MIBC) from acetone and hydrogen is a typical cascade reaction comprised of aldol condensation-dehydration-hydrogenation. Pd loss and aggregation during long term operation are typical problems in industrial application. In this paper, an active and stable catalyst was achieved with defective UiO-66 as a support for Pd, which was synthesized with the ratio 15 : 1 of ZrOCl2·8H2O to ZrCl4 as Zr-precursors. The resultant Pd catalyst remained active for at least 1000 h with a MIBK + MIBC selectivity of 84.87-93.09% and acetone conversion of 45.26-53.22% in a continuous trickle-bed reactor. Besides the increased Brønsted acid amount generated by the defect sites was favorable for the activity, the cavity confinement in the UiO-66 (R = 15 : 1) structure also efficiently prevented Pd loss and aggregation during the long term run. The contrast of the characterization of the fresh and used Pd/UiO-66 (R = 15 : 1) indicated that the deactivation of the catalyst was attributed to carbonaceous accumulation on the catalyst surface, which could be easily regenerated by calcination. This work supplied a new alternative for the design and utilization of industrial catalysts for MIBK and MIBC synthesis.
Collapse
Affiliation(s)
- Yingjie Hu
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yuxin Mei
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Baining Lin
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xuhong Du
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Fan Xu
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Huasheng Xie
- Cangzhou Dahua Group Company, Ltd Cangzhou 061000 China
| | - Kang Wang
- Cangzhou Dahua Group Company, Ltd Cangzhou 061000 China
| | - Yonghua Zhou
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|
31
|
Wang Z, Pang J, Song L, Li X, Yuan Q, Li X, Liu S, Zheng M. Conversion of Ethanol to n-Butanol over NiCeO2 Based Catalysts: Effects of Metal Dispersion and NiCe Interactions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhinuo Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, People’s Republic of China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Lei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Qiang Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Xinsheng Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Shimin Liu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, People’s Republic of China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| |
Collapse
|
32
|
Wang Q, Ge M, Dou Y, Yang F, Wang J, Shao Y, Huang A. Engineering ultrafine Pd clusters on laminar polyamide: A promising catalyst for benzyl alcohol oxidation under air in water. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Meng T, Shang N, Nsabimana A, Ye H, Wang H, Wang C, Zhang Y. An enzyme-free electrochemical biosensor based on target-catalytic hairpin assembly and Pd@UiO-66 for the ultrasensitive detection of microRNA-21. Anal Chim Acta 2020; 1138:59-68. [PMID: 33161985 DOI: 10.1016/j.aca.2020.09.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
MicroRNA-21 (miR-21) has been widely investigated as important biomarkers for cancer diagnosis and treatment. Herein, a highly sensitive nonenzymatic electrochemical biosensor based on Pd@metal-organic frameworks (Pd@UiO-66) and target-catalytic hairpin assembly (CHA) with target recycling approach has been proposed for the detection of miR-21. The proposed biosensor integrates the efficient CHA strategy and excellent electrocatalytic performance of Pd@UiO-66 nanocomposites. The concentration of miRNA-21 is related to the amount of the adsorbed electrocatalyst, leading to the different electrochemical signals for readout towards paracetamol (AP). This biosensor shows a low limit of detection of 0.713 fM with the dynamic range of 20 fM -600 pM under the optimal experimental conditions, providing a powerful platform for detecting miR-21. Furthermore, the designed biochemical self-assembly strategy of this electrochemical biosensor is promising candidate for potential applications in the analysis of other important genetic biomarkers for early diagnosis of cancers.
Collapse
Affiliation(s)
- Tianjiao Meng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, 071001, Baoding, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Huimin Ye
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Huan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Chun Wang
- College of Science, Hebei Agricultural University, 071001, Baoding, PR China.
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China.
| |
Collapse
|
34
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
35
|
Tong Y, Zhou J, He Y, Tu P, Xue B, Cheng Y, Cen J, Zheng Y, Ni J, Li X. Structure‐activity Relationship of Cu Species in the Ethanol Upgrading to n‐Butanol. ChemistrySelect 2020. [DOI: 10.1002/slct.202000844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuqin Tong
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Jian Zhou
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Yaohui He
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Pengxiang Tu
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Bing Xue
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Yunhui Cheng
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Jie Cen
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Yifan Zheng
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Jun Ni
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| | - Xiaonian Li
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R. China
| |
Collapse
|
36
|
Chen D, Yang W, Jiao L, Li L, Yu SH, Jiang HL. Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000041. [PMID: 32529707 DOI: 10.1002/adma.202000041] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Indexed: 05/22/2023]
Abstract
The chemical environment of metal nanoparticles (NPs) possesses significant influence on their catalytic performance yet is far from being well understood. Herein, tiny Pd NPs are encapsulated into the pore space of metal-organic frameworks (MOFs), UiO-66-X (X = H, OMe, NH2 , 2OH, 2OH(Hf)), affording Pd@UiO-66-X composites. The surface microenvironment of the Pd NPs is readily modulated by pore wall engineering, via the functional group and metal substitution in the MOFs. Consequently, the catalytic activity of Pd@UiO-66-X follows the order of Pd@UiO-66-OH > Pd@UiO-66-2OH(Hf) > Pd@UiO-66-NH2 > Pd@UiO-66-OMe > Pd@UiO-66-H toward the hydrogenation of benzoic acid. It is found that the activity difference is not only ascribed to the distinct charge transfer between Pd and the MOF, but is also explained by the discriminated substrate adsorption energy of Pd@UiO-66-X (-OH < -2OH(Hf) < -NH2 < -OMe < -H), based on CO-diffuse reflectance infrared Fourier transform spectra and density-functional theory (DFT) calculations. The Pd@UiO-66-OH, featuring a high Pd electronic state and moderate adsorption energy, displays the highest activity. This work highlights the influence of the surface microenvironment of guest metal NPs, the catalytic activity of which is dominated by electron transfer and the adsorption energy, via the systematic substitution of metal and functional groups in host MOFs.
Collapse
Affiliation(s)
- Dongxiao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P.R. China
| | - Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Luyan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
37
|
Tu P, Xue B, Tong Y, Zhou J, He Y, Cheng Y, Ni J, Li X. Effect of Doping Metal Oxide in ZnO/SBA‐15 on Its Acid‐Base Properties and Performance in Ethanol‐to‐Butadiene Process. ChemistrySelect 2020. [DOI: 10.1002/slct.202000637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengxiang Tu
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| | - Bing Xue
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| | - Yuqin Tong
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| | - Jian Zhou
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| | - Yaohui He
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| | - Yunhui Cheng
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| | - Jun Ni
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| | - Xiaonian Li
- Institute of Industrial CatalysisZhejiang University of Technology 18, Chaowang Road Hangzhou P.R.China. (J. Ni
| |
Collapse
|
38
|
Daliran S, Ghazagh-Miri M, Oveisi AR, Khajeh M, Navalón S, Âlvaro M, Ghaffari-Moghaddam M, Samareh Delarami H, García H. A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25221-25232. [PMID: 32368890 DOI: 10.1021/acsami.0c06672] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reports the synthesis of pyridyltriazol-functionalized UiO-66 (UiO stands for University of Oslo), namely, UiO-66-Pyta, from UiO-66-NH2 through three postsynthetic modification (PSM) steps. The good performance of the material derives from the observation that partial formylation (∼21% of -NHCHO groups) of H2BDC-NH2 by DMF, as persistent impurity, takes place during the synthesis of the UiO-66-NH2. Thus, to enhance material performance, first, the as-synthesized UiO-66-NH2 was deformylated to give pure UiO-66-NH2. Subsequently, the pure UiO-66-NH2 was converted to UiO-66-N3 with a nearly complete conversion (∼95%). Finally, the azide-alkyne[3+2]-cycloaddition reaction of 2-ethynylpyridine with the UiO-66-N3 gave the UiO-66-Pyta. The porous MOF was then applied for the solid-phase extraction of palladium ions from an aqueous medium. Affecting parameters on extraction efficiency of Pd(II) ions were also investigated and optimized. Interestingly, UiO-66-Pyta exhibited selective and superior adsorption capacity for Pd(II) with a maximum sorption capacity of 294.1 mg g-1 at acidic pH (4.5). The limit of detection (LOD) was found to be 1.9 μg L-1. The estimated intra- and interday precisions are 3.6 and 1.7%, respectively. Moreover, the adsorbent was regenerated and reused for five cycles without any significant change in the capacity and repeatability. The adsorption mechanism was described based on various techniques such as FT-IR, PXRD, SEM/EDS, ICP-AES, and XPS analyses as well as density functional theory (DFT) calculations. Notably, as a case study, the obtained UiO-66-Pyta after palladium adsorption, UiO-66-Pyta-Pd, was used as an efficient catalyst for the Suzuki-Miyaura cross-coupling reaction.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
- Departamento de Química and Instituto de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
- Faculty of Chemistry, Bu-Ali Sina University, 6517838683 Hamedan, Iran
| | | | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Sergio Navalón
- Departamento de Química and Instituto de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Mercedes Âlvaro
- Departamento de Química and Instituto de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | - Hermenegildo García
- Departamento de Química and Instituto de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Zeng L, Wang Y, Li Z, Song Y, Zhang J, Wang J, He X, Wang C, Lin W. Highly Dispersed Ni Catalyst on Metal-Organic Framework-Derived Porous Hydrous Zirconia for CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17436-17442. [PMID: 32195562 DOI: 10.1021/acsami.9b23277] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the preparation of porous hydrous zirconia by treatment of zirconium-based metal-organic framework (MOF) UiO-66 with a strong base. Microporosity of the original MOF was partially retained in the resultant porous hydrous zirconia. NiII centers were then adsorbed onto the OH-rich hydrous zirconia and in situ converted to highly dispersed Ni0 for CO2 hydrogenation to CH4. The activated catalyst after an induction period showed a turnover frequency of 345 h-1 or a space-time yield of 5851 mmol·gNi-1·h-1 with a CH4 selectivity of over 99%. The catalyst was tested for 100 h on stream, showing only a 4% decrease in activity, and was found to convert atmospheric CO2 to CH4 via CO2 collection through Na2CO3/NaHCO3 cycling. Thermal decomposition of NaHCO3 released CO2 for hydrogenation to CH4, and the resultant Na2CO3 absorbed CO2 from air to form NaHCO3. This work highlights the opportunity in using MOFs as precursors to prepare highly porous metal oxide/hydroxide supports for solid-gas phase catalysis.
Collapse
Affiliation(s)
- Lingzhen Zeng
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Yongke Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Zhe Li
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Yang Song
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Jingzheng Zhang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Xuefeng He
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Catalytic upgrading of ethanol to butanol over a binary catalytic system of FeNiO and LiOH. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63541-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem Rev 2020; 120:8468-8535. [DOI: 10.1021/acs.chemrev.9b00685] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasiya Bavykina
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Il Son Khan
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jeremy A. Bau
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
42
|
Mu J, Liu J, Ran Z, Arif M, Gao M, Wang C, Ji S. Critical Role of CUS in the Au/MOF-808(Zr) Catalyst for Reaction of CO 2 with Amine/H 2 via N-Methylation and N-Formylation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jincheng Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of XPCC, Tarim University, Xinjiang, Alar 843300, China
| | - Jianfang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenzhen Ran
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Arif
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengfu Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
43
|
Zhang J, Shi K, An Z, Zhu Y, Shu X, Song H, Xiang X, He J. Acid–Base Promoted Dehydrogenation Coupling of Ethanol on Supported Ag Particles. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06778] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Shi
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
44
|
Choe K, Zheng F, Wang H, Yuan Y, Zhao W, Xue G, Qiu X, Ri M, Shi X, Wang Y, Li G, Tang Z. Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kwanghak Choe
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yi Yuan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Myonghak Ri
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yinglong Wang
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
45
|
Choe K, Zheng F, Wang H, Yuan Y, Zhao W, Xue G, Qiu X, Ri M, Shi X, Wang Y, Li G, Tang Z. Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:3650-3657. [DOI: 10.1002/anie.201913453] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Kwanghak Choe
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yi Yuan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Myonghak Ri
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yinglong Wang
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
46
|
Preparation of Quasi-MIL-101(Cr) Loaded Ceria Catalysts for the Selective Catalytic Reduction of NOx at Low Temperature. Catalysts 2020. [DOI: 10.3390/catal10010140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, the development of novel catalysts with high activity Selective Catalytic Reduction (SCR) reaction at the low temperature is still a challenge. In this work, the authors prepare CeO2/quasi-MIL-101 catalysts with various amounts of deposited ceria by a double-solvent method, which are characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and so on. The results show that the increase of Ce content has a great influence on the catalytic property of the catalyst. The introduction of Ce can promote the conversion between Cr3+ and Cr5+ and increase the proportion of lattice oxygen, which improves the activity of the catalyst. However, the catalyst will be peroxidized when the content of Ce is too high, resulting in the decline of the catalytic activity. This experiment indicates that CeO2/quasi-MIL-101 plays a significant role in the NH3-SCR process at the low temperature when the loading of Ce is 0.5%. This work has proved the potential of this kind of material in NH3-SCR process at the low temperature, providing help for subsequent studies.
Collapse
|
47
|
Xu YP, Wang ZQ, Tan HZ, Jing KQ, Xu ZN, Guo GC. Lewis acid sites in MOFs supports promoting the catalytic activity and selectivity for CO esterification to dimethyl carbonate. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02330e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the effect of Lewis acidity in metal–organic frameworks (MOFs) on their activity as catalyst supports for the esterification of CO to dimethyl carbonate.
Collapse
Affiliation(s)
- Yu-Ping Xu
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou
- P. R. China
- State Key Laboratory of Structural Chemistry
| | - Zhi-Qiao Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Hong-Zi Tan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Kai-Qiang Jing
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Zhong-Ning Xu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences
- Fuzhou
- P. R. China
| |
Collapse
|
48
|
Wei C, Hou H, Wang E, Lu M. Preparation of a Series of Pd@UIO-66 by a Double-Solvent Method and Its Catalytic Performance for Toluene Oxidation. MATERIALS 2019; 13:ma13010088. [PMID: 31877997 PMCID: PMC6981644 DOI: 10.3390/ma13010088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/04/2022]
Abstract
This paper reports on the preparation, characterization, and catalytic properties of the Pd@UIO-66 for toluene oxidation. The samples are prepared by the double-solvent method to form catalysts with large specific surface area, highly dispersed Pd0 (Elemental palladium) and abundant adsorbed oxygen, which are characterized by X-ray Photoelectron Spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and Transmission Electron Microscopy (TEM). The results show that as the Pd content increases, the adsorbed oxygen content further increases, but at the same time Pd0 will agglomerate and lose some active sites, which will affect its catalytic performance. While 0.2%Pd@UIO-66 has the highest concentration of Pd0, the result shows it has the best catalytic activity and the T90 temperature is 210 °C.
Collapse
Affiliation(s)
| | | | | | - Min Lu
- Correspondence: ; Tel.: +86-1357-851-1861
| |
Collapse
|
49
|
Chen H, Mu Y, Shao Y, Chansai S, Xiang H, Jiao Y, Hardacre C, Fan X. Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO
2
hydrogenation. AIChE J 2019. [DOI: 10.1002/aic.16853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Huanhao Chen
- Department of Chemical Engineering and Analytical ScienceSchool of Engineering, The University of Manchester Manchester UK
| | - Yibing Mu
- Department of Chemical Engineering and Analytical ScienceSchool of Engineering, The University of Manchester Manchester UK
| | - Yan Shao
- Department of Chemical Engineering and Analytical ScienceSchool of Engineering, The University of Manchester Manchester UK
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen China
| | - Sarayute Chansai
- Department of Chemical Engineering and Analytical ScienceSchool of Engineering, The University of Manchester Manchester UK
| | - Huan Xiang
- Department of Chemical Engineering and Analytical ScienceSchool of Engineering, The University of Manchester Manchester UK
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences Shenyang China
| | - Christopher Hardacre
- Department of Chemical Engineering and Analytical ScienceSchool of Engineering, The University of Manchester Manchester UK
| | - Xiaolei Fan
- Department of Chemical Engineering and Analytical ScienceSchool of Engineering, The University of Manchester Manchester UK
| |
Collapse
|
50
|
Neumann CN, Rozeveld SJ, Yu M, Rieth AJ, Dincă M. Metal–Organic Framework-Derived Guerbet Catalyst Effectively Differentiates between Ethanol and Butanol. J Am Chem Soc 2019; 141:17477-17481. [DOI: 10.1021/jacs.9b08968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Constanze N. Neumann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Steven J. Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Mingzhe Yu
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Adam J. Rieth
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|