1
|
Lee M, Jang HS, Yoon G, Ryu GH. Phase transition of amorphous cobalt hydroxide to crystalline cobalt oxides by electron-beam irradiation. Appl Microsc 2025; 55:2. [PMID: 40050523 PMCID: PMC11885718 DOI: 10.1186/s42649-025-00107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
Transmission electron microscopy (TEM), which can analyze the shape and crystallinity of materials as well as the chemical bonding of ions and the states of elements, operates at different accelerating voltages depending on the type of specimen analyzed and the analysis area. Electron-beam irradiation can be used to induce structural transitions and crystallization of materials. Therefore, studies on phase transition using electron beams have been frequently conducted. Cobalt oxides, including cobalt hydroxides, have various phases and crystal structures, depending on their stoichiometric compositions. Specific synthesis methods can be used to synthesize these at low dimensions, in addition to large nanosheet structures. In this study, the crystallization and phase transition of amorphous cobalt hydroxide nanosheets induced by continuous electron-beam irradiation were analyzed using high-resolution TEM (HR-TEM). The synthesized cobalt hydroxide nanosheets were partially converted into cobalt oxides, and the transferred area expanded as the irradiation time increased. Under 300 kV of accelerating voltage, the transition to cubic cobalt oxides was dominant, suggesting a frequent transitional behavior of amorphous metal hydroxides upon electron-beam irradiation.
Collapse
Affiliation(s)
- Minjeong Lee
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hye Seong Jang
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gayoung Yoon
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Korea
| | - Gyeong Hee Ryu
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
2
|
Li G, Priyadarsini A, Xie Z, Kang S, Liu Y, Chen X, Kattel S, Chen JG. Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrO x over Co 3O 4. J Am Chem Soc 2025; 147:7008-7016. [PMID: 39945409 DOI: 10.1021/jacs.4c17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrOx) has been uniformly dispersed onto cobalt oxide (Co3O4) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrOx cluster, the atomically thin layer of IrOx shows stronger interaction with the Co3O4 and consequently higher OER activity due to the Ir-O-Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm-2 at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.
Collapse
Affiliation(s)
- Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Adyasa Priyadarsini
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobo Chen
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shyam Kattel
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
3
|
Tang Y, Yan G, Zhang S, Li Y, Nguyen L, Iwasawa Y, Sakata T, Andolina C, Yang JC, Sautet P, Tao FF. Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd 1 and Mo 1 Single-Atom Sites. J Am Chem Soc 2024; 146:32366-32382. [PMID: 39541949 DOI: 10.1021/jacs.4c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
On-purpose atomic scale design of catalytic sites, specifically active and selective at low temperature for a target reaction, is a key challenge. Here, we report teamed Pd1 and Mo1 single-atom sites that exhibit high activity and selectivity for anisole hydrodeoxygenation to benzene at low temperatures, 100-150 °C, where a Pd metal nanoparticle catalyst or a MoO3 nanoparticle catalyst is individually inactive. The catalysts built from Pd1 or Mo1 single-atom sites alone are much less effective, although the catalyst with Pd1 sites shows some activity but low selectivity. Similarly, less dispersed nanoparticle catalysts are much less effective. Computational studies show that the Pd1 and Mo1 single-atom sites activate H2 and anisole, respectively, and their combination triggers the hydrodeoxygenation of anisole in this low-temperature range. The Co3O4 support is inactive for anisole hydrodeoxygenation by itself but participates in the chemistry by transferring H atoms from Pd1 to the Mo1 site. This finding opens an avenue for designing catalysts active for a target reaction channel such as conversion of biomass derivatives at a low temperature where neither metal nor oxide nanoparticles are.
Collapse
Affiliation(s)
- Yu Tang
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Shiran Zhang
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yuting Li
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Luan Nguyen
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells and Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Tomohiro Sakata
- Innovation Research Center for Fuel Cells and Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Christopher Andolina
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Franklin Feng Tao
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Kox T, Kenmoe S. Co 3O 4 (111) surfaces in contact with water: molecular dynamics study of the surface chemistry and structure at room temperature. Dalton Trans 2024; 53:13184-13194. [PMID: 39046332 DOI: 10.1039/d4dt01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In this work, we have used ab initio molecular dynamics at room temperature to study the adsorption and dissociation of a thin water film on Co3O4 (111) surfaces, considering the O-rich and Co-rich terminations named as the A-type and B-type surface terminations, respectively. We investigate the occupation of active sites, the hydrogen bond network at the interface and the structural response of the surfaces to water adsorption. On both terminations, water adsorbs via a partial dissociative mode. The contact layer is populated by molecular water as well as OH groups and surface OH resulting from proton transfer to the surface. The B-termination is more reactive, with a higher degree of dissociation in the contact layer with water (46%). On the B-terminated surface, water barely adsorbs on the Co2+ sites and almost exclusively binds and dissociates on the Co3+ sites. The interaction with the surface consists mostly of Co3+-Ow bonds and proton transfer exclusively to the 3-fold unsaturated surface Os1. Hydrogen bonds between water molecules in the aqueous film dominate the hydrogen bond network and no hydrogen bonds between water and the surface are observed. The A-terminated surface is less reactive. Water binds covalently on Co2+ sites, with a dissociation degree of 13%. Proton transfer occurs mostly on the 3-fold unsaturated surface oxygens Os1. Besides, short-lived surface OH arising from proton transfer to 3-fold unsaturated surface oxygens Os2 is observed. H-bonding to surface Os1 and Os2 constitutes 12.7% and 19.8% of the H-bond network, respectively, and the largest contribution is found among the water molecules (67.4%). On both surfaces, the coordination number of the active sites drives the relaxations of the outermost atom positions to the their bulk counterparts. The occupation of active sites on B-termination could reach up to 3 adsorbates per Co3+ leading to a binding motif in which the Co is octahedrally coordinated and which was observed experimentally.
Collapse
Affiliation(s)
- Tim Kox
- Department of Theoretical Chemistry, University of Duisburg-Essen, Universitätstrasse 2, D-45141, Essen, Germany.
| | - Stephane Kenmoe
- Department of Theoretical Chemistry, University of Duisburg-Essen, Universitätstrasse 2, D-45141, Essen, Germany.
| |
Collapse
|
5
|
Jiang S, Mushrif SH. Determining surface-specific Hubbard- U corrections and identifying key adsorbates on nickel and cobalt oxide catalyst surfaces. Phys Chem Chem Phys 2023; 25:8903-8912. [PMID: 36916613 DOI: 10.1039/d2cp04814k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
NiO is a popular transition metal oxide (TMO) with high thermal and chemical stability and Co3O4 is a relatively more reducible TMO due to weaker metal-oxygen bonds. Both are often used as catalysts in a variety of chemical transformations. Density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) are used to investigate catalysis on TMO surfaces, yet both techniques have their own limitations. The accuracy of DFT highly depends on the choice of Hubbard U correction. The bulk-property optimized U value of 5.3 eV for NiO and different U values for Co3O4, without any consensus, are often used in the literature to simulate surface catalysis. However, U values optimized using bulk properties often fail to reproduce surface-adsorbate interactions on TMOs. Similarly, there exists arbitrariness in assigning observed XPS shifts to different surface species on these metal oxides. Hence, a synergistic application of XPS and DFT+U is implemented to determine the surface specific U values for NiO and Co3O4, and to identify adsorbed surface moieties corresponding to experimentally observed XPS shifts. For the NiO (100) surface, the U value of ∼2 eV is able to reproduce the experimentally observed XPS O1s core level binding energy shifts correctly, instead of the bulk property optimized and commonly used U value of 5.3 eV. Using this surface specific U value of 2 eV, the experimentally observed XPS shifts are assigned. Similarly, for Co3O4 (100) surface, ∼3 eV of U value could successfully predict the experimentally observed XPS shifts and corresponding adsorbates. The surface adsorbates and configurations suggested in this work will help analyze experimental XPS data and the surface specific U values will ensure accurate predictions of adsorption and reaction energetics on these catalysts.
Collapse
Affiliation(s)
- Shang Jiang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street Northwest, Edmonton, Alberta T6G 1H9, Canada.
| | - Samir H Mushrif
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street Northwest, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
6
|
Yigit N, Genest A, Terloev S, Möller J, Rupprechter G. Active sites and deactivation of room temperature CO oxidation on Co 3O 4catalysts: combined experimental and computational investigations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:354001. [PMID: 35588721 DOI: 10.1088/1361-648x/ac718b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Co3O4is a well-known low temperature CO oxidation catalyst, but it often suffers from deactivation. We have thus examined room temperature (RT) CO oxidation on Co3O4catalysts by operando DSC, TGA and MS measurements, as well as by pulsed chemisorption to differentiate the contributions of CO adsorption and reaction to CO2. Catalysts pretreated in oxygen at 400 °C are most active, with the initial interaction of CO and Co3O4being strongly exothermic and with maximum amounts of CO adsorption and reaction. The initially high RT activity then levels-off, suggesting that the oxidative pretreatment creates an oxygen-rich reactive Co3O4surface that upon reaction onset loses its most active oxygen. This specific active oxygen is not reestablished by gas phase O2during the RT reaction. When the reaction temperature is increased to 150 °C, full conversion can be maintained for 100 h, and even after cooling back to RT. Apparently, deactivating species are avoided this way, whereas exposing the active surface even briefly to pure CO leads to immediate deactivation. Computational modeling using DFT helped to identify the CO adsorption sites, determine oxygen vacancy formation energies and the origin of deactivation. A new species of CO bonded to oxygen vacancies at RT was identified, which may block a vacancy site from further reaction unless CO is removed at higher temperature. The interaction between oxygen vacancies was found to be small, so that in the active state several lattice oxygen species are available for reaction in parallel.
Collapse
Affiliation(s)
- Nevzat Yigit
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Alexander Genest
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Schamil Terloev
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jury Möller
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
7
|
Magnesium-Modified Co3O4 Catalyst with Remarkable Performance for Toluene Low Temperature Deep Oxidation. Catalysts 2022. [DOI: 10.3390/catal12040411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Co3O4, MgCo2O4 and MgO materials have been synthesized using a simple co-precipitation approach and systematically characterized. The total conversion of toluene to CO2 and H2O over spinel MgCo2O4 with wormlike morphology has been investigated. Compared with single metal oxides (Co3O4 and MgO), MgCo2O4 with the highest activity has exhibited almost 100% oxidation of toluene at 255 °C. The obtained results are analogous to typical precious metal supported catalysts. The activation energy of toluene over MgCo2O4 (38.5 kJ/mol) is found to be much lower than that of Co3O4 (68.9 kJ/mol) and MgO ((87.8 kJ/mol)). Compared with the single Co and Mg metal oxide, the as-prepared spinel MgCo2O4 exhibits a larger surface area, highest absorbed oxygen and more oxygen vacancies, thus highest mobility of oxygen species due to its good redox capability. Furthermore, the samples specific surface area, low-temperature reducibility and surface adsorbed oxygenated species ratio decreased as follows: MgCo2O4 > Co3O4 > MgO; which is completely in line with the catalytic performance trends and constitute the reasons for MgCo2O4 high excellent activity towards toluene total oxidation. The overall finding supported by ab initio molecular dynamics simulations of toluene oxidation on the Co3O4 and MgCo2O4 suggest that the catalytic process follows a Mars–van Krevelen mechanism.
Collapse
|
8
|
Forster-Tonigold K, Kim J, Bansmann J, Groß A, Buchner F. Model Studies on the Formation of the Solid Electrolyte Interphase: Reaction of Li with Ultrathin Adsorbed Ionic-Liquid Films and Co 3 O 4 (111) Thin Films. Chemphyschem 2021; 22:441-454. [PMID: 33373085 PMCID: PMC7986933 DOI: 10.1002/cphc.202001033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/15/2022]
Abstract
In this work we aim towards the molecular understanding of the solid electrolyte interphase (SEI) formation at the electrode electrolyte interface (EEI). Herein, we investigated the interaction between the battery‐relevant ionic liquid (IL) 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP‐TFSI), Li and a Co3O4(111) thin film model anode grown on Ir(100) as a model study of the SEI formation in Li‐ion batteries (LIBs). We employed mostly X‐ray photoelectron spectroscopy (XPS) in combination with dispersion‐corrected density functional theory calculations (DFT‐D3). If the surface is pre‐covered by BMP‐TFSI species (model electrolyte), post‐deposition of Li (Li+ ion shuttle) reveals thermodynamically favorable TFSI decomposition products such as LiCN, Li2NSO2CF3, LiF, Li2S, Li2O2, Li2O, but also kinetic products like Li2NCH3C4H9 or LiNCH3C4H9 of BMP. Simultaneously, Li adsorption and/or lithiation of Co3O4(111) to LinCo3O4 takes place due to insertion via step edges or defects; a partial transformation to CoO cannot be excluded. Formation of Co0 could not be observed in the experiment indicating that surface reaction products and inserted/adsorbed Li at the step edges may inhibit or slow down further Li diffusion into the bulk. This study provides detailed insights of the SEI formation at the EEI, which might be crucial for the improvement of future batteries.
Collapse
Affiliation(s)
- Katrin Forster-Tonigold
- Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Jihyun Kim
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Joachim Bansmann
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Axel Groß
- Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081, Ulm, Germany.,Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Florian Buchner
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| |
Collapse
|
9
|
Rudel HE, Lane MKM, Muhich CL, Zimmerman JB. Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure-Property-Function Relationships for Faceted Nanoscale Metal Oxides. ACS NANO 2020; 14:16472-16501. [PMID: 33237735 PMCID: PMC8144246 DOI: 10.1021/acsnano.0c08356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoscale metal oxides (NMOs) have found wide-scale applicability in a variety of environmental fields, particularly catalysis, gas sensing, and sorption. Facet engineering, or controlled exposure of a particular crystal plane, has been established as an advantageous approach to enabling enhanced functionality of NMOs. However, the underlying mechanisms that give rise to this improved performance are often not systematically examined, leading to an insufficient understanding of NMO facet reactivity. This critical review details the unique electronic and structural characteristics of commonly studied NMO facets and further correlates these characteristics to the principal mechanisms that govern performance in various catalytic, gas sensing, and contaminant removal applications. General trends of facet-dependent behavior are established for each of the NMO compositions, and selected case studies for extensions of facet-dependent behavior, such as mixed metals, mixed-metal oxides, and mixed facets, are discussed. Key conclusions about facet reactivity, confounding variables that tend to obfuscate them, and opportunities to deepen structure-property-function understanding are detailed to encourage rational, informed design of NMOs for the intended application.
Collapse
Affiliation(s)
- Holly E Rudel
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Christopher L Muhich
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School for the Engineering of Matter, Transport, and Energy, Ira A Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85001, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
10
|
Wang D, Wang CM, Yang WM. Three-Dimensional Kinetic Trends in Zeolites Catalyzed Benzene Ethylation Reaction: A Descriptor-Based DFT Study Coupled with Microkinetic Modeling. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuan-Ming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| | - Wei-Min Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| |
Collapse
|