1
|
Pham HQ, Dao TBN, Nguyen AQK, Huynh Q, Huynh TT. Nitrogen-doped 2D MXene-based catalysts: Synthesis, properties and applications for electrochemical hydrogen production. Adv Colloid Interface Sci 2025; 341:103493. [PMID: 40147212 DOI: 10.1016/j.cis.2025.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/25/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Designing advanced materials with a trade-off between overall electrocatalytic efficiency and economic cost for electrochemical hydrogen production is crucial to overcoming the current energy crisis and environmental issues. On the more 10-year journey since the discovery, transition-metal carbides/nitrides nanosheets (MXenes) have increasingly attracted attention as potential materials toward hydrogen/oxygen evolution reactions (HER/OER) because of their unique physical and chemical characteristics, but the layered restacking and low intrinsic electrochemical activity are dragging them out water-splitting technology. Doping MXenes with nitrogen atoms has recently been introduced as a facile but efficient strategy to accelerate the HER/OER efficiency by the optimization of electronic structure, surface terminations, and adsorption/desorption energies of intermediates on pristine MXenes. However, a comprehensive evaluation of the doping mechanism and content-structure-performance relationship of N-doped 2D MXene-related catalysts is still lacking. Thus, we herein systematically summarize synthetic strategies, theoretical calculations, properties, and applications of nitrogen-doped 2D MXenes for the HER and OER to give more fundamental insights into physicochemical characteristics of nitrogen-doped 2D MXenes to further design next-generation catalysts for the electrochemical hydrogen production and other applications.
Collapse
Affiliation(s)
- Hau Quoc Pham
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam; Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam.
| | - Thi-Bich-Ngoc Dao
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam
| | - Anh Quoc Khuong Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, ST, Viet Nam
| | - Quyen Huynh
- Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam
| | - Tai Thien Huynh
- Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam.
| |
Collapse
|
2
|
Zhao S, Hung SF, Wang Y, Li S, Yang J, Zeng WJ, Zhang Y, Chang HH, Chen HY, Hu F, Li L, Peng S. Dynamic Deprotonation Enhancement Triggered by Accelerated Electrochemical Delithiation Reconstruction during Acidic Water Oxidation. J Am Chem Soc 2025; 147:7993-8003. [PMID: 39967426 DOI: 10.1021/jacs.5c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The structure-dependent transition in reaction pathways during acidic oxygen evolution (OER) is pivotal due to the active site oxidation accompanied by the coordination environment changes. In this work, charge-polarized Ir-O-Co units are constructed in alkali metal cobalt oxides (LiCoO2, and Na0.74CoO2) to modify the lower Hubbard band. Benefiting from the accelerated delithiation reconstruction induced by the altered band structure, typical Ir-LiCoO2 produces high-valent Ir sites with unsaturated coordination through the charge compensation during OER. Oxygen atoms shared by trimetallic sites exhibit strong Bro̷nsted acidity, promoting proton migration for unsaturated Ir sites and dynamically enhancing deprotonation. Furthermore, the stable coordination environment, along with electron donation from Co sites, significantly improves the stability of Ir sites. The unique electrochemical activation results in a low overpotential of 190 mV at 10 mA cm-2 during acidic OER and delivers exceptional stability at 1 A cm-2 for 150 h with a slight voltage degradation in a proton exchange membrane electrolyzer. This work provides in-depth insights into the relationship between catalyst reconstruction and reaction mechanisms.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yue Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Juan Yang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao-Hsiang Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
3
|
Deng L, Hung SF, Liu S, Zhao S, Lin ZY, Zhang C, Zhang Y, Wang AY, Chen HY, Peng J, Ma R, Jiao L, Hu F, Li L, Peng S. Accelerated Proton Transfer in Asymmetric Active Units for Sustainable Acidic Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:23146-23157. [PMID: 39109994 DOI: 10.1021/jacs.4c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The poor durability of Ru-based catalysts limits the practical application in proton exchange membrane water electrolysis (PEMWE). Here, we report that the asymmetric active units in Ru1-xMxO2 (M = Sb, In, and Sn) binary solid solution oxides are constructed by introducing acid-resistant p-block metal sites, breaking the activity and stability limitations of RuO2 in acidic oxygen evolution reaction (OER). Constructing highly asymmetric Ru-O-Sb units with a strong electron delocalization effect significantly shortens the spatial distance between Ru and Sb sites, improving the bonding strength of the overall structure. The unique two-electron redox couples at Sb sites in asymmetric active units trigger additional chemical steps at different OER stages, facilitating continuous proton transfer. The optimized Ru0.8Sb0.2O2 solid solution requires a superlow overpotential of 160 mV at 10 mA cm-2 and a record-breaking stability of 1100 h in an acidic electrolyte. Notably, the scale-prepared Ru0.8Sb0.2O2 achieves efficient PEMWE performance under industrial conditions. General mechanism analysis shows that the enhanced proton transport in the asymmetric Ru-O-M unit provides a new working pathway for acidic OER, breaking the scaling relationship without sacrificing stability.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ai-Yin Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Rongpeng Ma
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
4
|
Xie W, Yu Z, Huang H, Jiang R, Yao S, Huang J, Hou Y, Yin S, Mo R, Wu C. Anthraquinone-based polymer modified BiVO 4 photoanode with strong electron-withdrawing functional groups for boasting photoelectrochemical water oxidation. J Colloid Interface Sci 2024; 665:977-987. [PMID: 38574586 DOI: 10.1016/j.jcis.2024.03.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
The photoelectrochemical (PEC) performance ofBiVO4 is limited by sluggish water oxidation kinetics and severe carrier recombination. Herein, a novel high-performance BiVO4/NiFe-NOAQ photoanode is prepared by a simple one-step hydrothermal method, using BiVO4 and 1-Nitroanthraquinone (NOAQ) as raw materials. The BiVO4/NiFe-NOAQ photoanode has an excellent photocurrent density of 5.675 mA cm-2 at 1.23 VRHE, which is 3.35 times higher than that of the pure BiVO4 (1.693 mA cm-2) photoanode. The BiVO4/NiFe-NOAQ shows a significant improvement in charge separation efficiency (86.12 %) and charge injection efficiency (87.86 %). The improvement is ascribable to the NiFe-NOAQ form a type II heterojunction with BiVO4 to inhibit carrier recombination. More importantly, the kinetic isotope experiment suggests that the proton-coupled electron transfer (PCET) process can enhance the charge transfer of BiVO4/NiFe-NOAQ. The contact angle measurements show that modifying functional groups enhanced the hydrophilicity of BiVO4/NiFe-NOAQ, which can further accelerate the PCET process. The XPS and PL results as well as the tauc plot indicate that the strong electron-withdrawing ability of -NO2 which can promote the extension of π conjugation, results in more π electron delocalization and produces more efficient active sites, thus achieving efficient photoelectrochemical water oxidation.
Collapse
Affiliation(s)
- Wenhui Xie
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning 530004, PR China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning 530004, PR China.
| | - Hongcheng Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Jun Huang
- School of Civil Engineering and Architecture, Guangxi Minzu University, Nanning 530004, PR China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning 530004, PR China
| | - Rongli Mo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Cheng Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
5
|
Wang Y, Ge X, Lu Q, Bai W, Ye C, Shao Z, Bu Y. Accelerated deprotonation with a hydroxy-silicon alkali solid for rechargeable zinc-air batteries. Nat Commun 2023; 14:6968. [PMID: 37907458 PMCID: PMC10618233 DOI: 10.1038/s41467-023-42728-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Transition metal oxides are promising electrocatalysts for zinc-air batteries, yet surface reconstruction caused by the adsorbate evolution mechanism, which induces zinc-ion battery behavior in the oxygen evolution reaction, leads to poor cycling performance. In this study, we propose a lattice oxygen mechanism involving proton acceptors to overcome the poor performance of the battery in the OER process. We introduce a stable solid base, hydroxy BaCaSiO4, onto the surfaces of PrBa0.5Ca0.5Co2O5+δ perovskite nanofibers with a one-step exsolution strategy. The HO-Si sites on the hydroxy BaCaSiO4 significantly accelerate proton transfer from the OH* adsorbed on PrBa0.5Ca0.5Co2O5+δ during the OER process. As a proof of concept, a rechargeable zinc-air battery assembled with this composite electrocatalyst is stable in an alkaline environment for over 150 hours at 5 mA cm-2 during galvanostatic charge/discharge tests. Our findings open new avenues for designing efficient OER electrocatalysts for rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Yaobin Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China
| | - Qian Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China.
| | - Wenjun Bai
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia.
| | - Yunfei Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China.
| |
Collapse
|
6
|
Mohamadpour F. Carbazole-based photocatalyst (4CzIPN) as a novel donor-acceptor (D-A) fluorophore catalyzed gram-scale 2-amino-4H-chromene scaffolds photosynthesis via a proton-coupled electron transfer (PCET) process. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Trimetallic Co-Ni-Mn metal-organic framework as an efficient electrocatalyst for alkaline oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Zhou B, Gao R, Zou JJ, Yang H. Surface Design Strategy of Catalysts for Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202336. [PMID: 35665595 DOI: 10.1002/smll.202202336] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen, a new energy carrier that can replace traditional fossil fuels, is seen as one of the most promising clean energy sources. The use of renewable electricity to drive hydrogen production has very broad prospects for addressing energy and environmental problems. Therefore, many researchers favor electrolytic water due to its green and low-cost advantages. The electrolytic water reaction comprises the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Understanding the OER and HER mechanisms in acidic and alkaline processes contributes to further studying the design of surface regulation of electrolytic water catalysts. The OER and HER catalysts are mainly reviewed for defects, doping, alloying, surface reconstruction, crystal surface structure, and heterostructures. Besides, recent catalysts for overall water splitting are also reviewed. Finally, this review paves the way to the rational design and synthesis of new materials for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Binghui Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China
- State Key Lab of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
Dang K, Dong H, Wang L, Jiang M, Jiang S, Sun W, Wang D, Tian Y. Boosting Electrochemical Styrene Transformation via Tandem Water Oxidation over a Single-Atom Cr 1 /CoSe 2 Catalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200302. [PMID: 35460128 DOI: 10.1002/adma.202200302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxidation of organics using water as the oxygen source is a prospective but challenging method to produce high-value-added chemicals; especially, the competitive oxygen evolution reaction (OER) limits its efficiency. Herein, a tandem catalysis strategy based on a single-atom catalyst with Cr atoms atomically dispersed at a CoSe2 support (Cr1 /CoSe2 ) is presented. Thereinto, Co and Cr sites are endowed with a specific function to activate water and styrene respectively, and the competition between the OER and styrene oxidation is turned into mutual benefits via cooperated active sites. Under a potential of 1.6 VAg/AgCl , excellent selectivity of 95% to benzaldehyde and a high conversion rate of styrene at 88% without any exogenous oxidizing reagent are achieved. Isotopic tracing, isotope-labeled in situ Raman spectra, and detailed theoretical calculation further reveal the tandem mechanism, showing that the transfer of *OOH intermediates from the Co to the Cr sites serves as a bridge to link the oxidation of water and styrene. This work develops a new strategy for the co-oxidation of multi-species based on tandem catalysis, providing novel insights for the design of single-atom catalysts.
Collapse
Affiliation(s)
- Kun Dang
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mai Jiang
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Sen Jiang
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Wenming Sun
- College of Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Tian
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
10
|
Liu K, Zhu Z, Jiang M, Li L, Ding L, Li M, Sun D, Yang G, Fu G, Tang Y. Boosting Electrocatalytic Oxygen Evolution over Ce-Co 9 S 8 Core-Shell Nanoneedle Arrays by Electronic and Architectural Dual Engineering. Chemistry 2022; 28:e202200664. [PMID: 35384094 DOI: 10.1002/chem.202200664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/24/2023]
Abstract
An dual electronic and architectural engineering strategy is a good way to rationally design earth-abundant and highly efficient electrocatalysts of the oxygen evolution reaction (OER) for sustainable hydrogen-based energy devices. Here, a Ce-doped Co9 S8 core-shell nanoneedle array (Ce-Co9 S8 @CC) supported on a carbon cloth has been designed and developed to accelerate the sluggish kinetics of the OER. Profiting from valance alternative Ce doping, a fine core-shell structure and vertically aligned nanoneedle arrayed architecture, Ce-Co9 S8 @CC integrates modulated electronic structure, highly exposed active sites, and multidimensional mass diffusion channels; together, these afford a favorable catalyzed OER. Ce-Co9 S8 @CC exhibits remarkable performance in the OER in an alkaline medium, where the overpotential requires only 242 mV to deliver a current density of 10 mA cm-2 for the OER; this is 70 mV superior to that of Ce-free Co9 S8 catalyst and other counterparts. Good stability and impressive selectivity (nearly 100 % Faradic efficiency) are also demonstrated. When integrated into a two-electrode OER//HER electrolyzer, the as-prepared Ce-Co9 S8 @CC displays a low operation potential of 1.54 V at 10 mA cm-2 and long-term stability, thus demonstrating great potential for economical water electrolysis.
Collapse
Affiliation(s)
- Kun Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhuoya Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Mengqi Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Liangcheng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Linfei Ding
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210037, P. R. China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Gao Y, Xue Q, Li J, Zhang M, Ma Y, Qu Y. Phytate Coordination-Enhanced Electrocatalytic Activity of Copper for Nitroarene Hydrogenation through Concerted Proton-Coupled Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14202-14209. [PMID: 35289590 DOI: 10.1021/acsami.1c24744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coupling acid-electrolyte proton exchange membrane fuel cells for electricity generation and cathodic hydrogenation for valuable chemical production shows great potential in energy and chemical industry. The key for this promising approach is the identification of cathode electrocatalysts with acid resistance, high activity, and low fabrication cost for practical applications. Among various promising cathodic candidates for this integrative approach, the easily available and cheap Cu suffers from low acidic hydrogenation activity due to kinetically arduous proton adsorption/activation. Inspired by the kinetic advantages of the concerted proton-coupled electron transfer (CPET) over the sequential proton-electron transfer process, herein, we use phytate coordination on Cu surface to overcome the kinetic bottleneck for proton adsorption/activation through the CPET pathway in an acidic half-cell setup; this leads to 1 order of magnitude activity enhancement (36.94-fold) for nitrobenzene hydrogenation. Mechanistic analysis confirms that phytate, as proton acceptor, induces the CPET process and overcomes the above kinetic limitations by tuning the d-band center and concentrating protons on the Cu surface. Consequently, the CPET process facilitates the formation of active hydrogen intermediates for efficient cathodic hydrogenation. This work provides a promising approach to integrate electricity generation and chemical production.
Collapse
Affiliation(s)
- Yuanfeng Gao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qingyu Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingkai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Naito T, Shinagawa T, Nishimoto T, Takanabe K. Gas Crossover Regulation by Porosity-Controlled Glass Sheet Achieves Pure Hydrogen Production by Buffered Water Electrolysis at Neutral pH. CHEMSUSCHEM 2022; 15:e202102294. [PMID: 34907667 PMCID: PMC9306655 DOI: 10.1002/cssc.202102294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Near-neutral pH water electrolysis driven by renewable electricity can reduce the costs of clean hydrogen generation, but its low efficiency and gas crossover in industrially relevant conditions remain a challenge. Here, it was shown that electrolyte engineering could suppress the crossover of dissolved gases such as O2 by regulating their diffusion flux. In addition, a hydrophilized mechanically stable glass sheet was found to block the permeation of gas bubbles, further enhancing the purity of evolved gas from water electrolysis. This sheet had a lower resistance than conventional diaphragms such as Zirfon due to its high porosity and small thickness. A saturated K-phosphate solution at pH 7.2 was used as an electrolyte together with the hydrophilized glass sheet as a gas-separator. This led to a near-neutral pH water electrolysis with 100 mA cm-2 at a total cell voltage of 1.56 V with 99.9 % purity of produced H2 .
Collapse
Affiliation(s)
- Takahiro Naito
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Tatsuya Shinagawa
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Takeshi Nishimoto
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Kazuhiro Takanabe
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| |
Collapse
|
13
|
Li J, Xia Z, Xue Q, Zhang M, Zhang S, Xiao H, Ma Y, Qu Y. Insights into the Interfacial Lewis Acid-Base Pairs in CeO 2 -Loaded CoS 2 Electrocatalysts for Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103018. [PMID: 34405538 DOI: 10.1002/smll.202103018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Despite the known efficacy of CeO2 as a promoter in alkaline hydrogen evolution reaction (HER), the underlying mechanism of this effect remains unclear. CoS2 , a pyrite-type alkaline HER electrocatalyst, suffers from sluggish HER kinetics and severe catalyst leaching due to its weak water dissociation kinetics and oxygen-related corrosion. Herein, it is demonstrated that the interfacial Lewis acid-base Ce∙∙∙S pairs in CeO2 -loaded CoS2 effectively improve the catalytic activity and durability. In CeO2 -loaded CoS2 nanowire array electrodes, these interfacial Lewis acid-base Ce∙∙∙S pairs with unique electronic and structural configurations efficiently activate water adsorptive dissociation and kinetically accelerate hydrogen evolution, delivering a low overpotential of 36 mV at 10 mA cm-2 in alkaline media. Such Ce∙∙∙S pairs also weaken O2 adsorption on CoS2 , leading to undecayed activity over 1000 h. These findings are expected to provide guidance for the design of CeO2 -based electrocatalysts as well as other hybrid electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhaoming Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingyu Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingkai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
14
|
Naito T, Shinagawa T, Nishimoto T, Takanabe K. Water Electrolysis in Saturated Phosphate Buffer at Neutral pH. CHEMSUSCHEM 2020; 13:5921-5933. [PMID: 32875653 PMCID: PMC7756658 DOI: 10.1002/cssc.202001886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Indexed: 05/22/2023]
Abstract
Hydrogen production from renewable energy and ubiquitous water has a potential to achieve sustainability, although current water electrolyzers cannot compete economically with the fossil fuel-based technology. Here, we evaluate water electrolysis at pH 7 that is milder than acidic and alkaline pH counterparts and may overcome this issue. The physicochemical properties of concentrated buffer electrolytes were assessed at various temperatures and molalities for quantitative determination of losses associated with mass-transport during the water electrolysis. Subsequently, in saturated K-phosphate solutions at 80 °C and 100 °C that were found to be optimal to minimize the losses originating from mass-transport at the neutral pH, the water electrolysis performance over model electrodes of IrOx and Pt as an anode and a cathode, respectively, was reasonably comparable with those of the extreme pH. Remarkably, this concentrated buffer solution also achieved enhanced stability, adding another merit of this electrolyte for water electrolysis.
Collapse
Affiliation(s)
- Takahiro Naito
- Department of ChemicalSystem Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Tatsuya Shinagawa
- Department of ChemicalSystem Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Takeshi Nishimoto
- Department of ChemicalSystem Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Kazuhiro Takanabe
- Department of ChemicalSystem Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| |
Collapse
|
15
|
Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides. Nat Commun 2020; 11:4299. [PMID: 32855418 PMCID: PMC7453016 DOI: 10.1038/s41467-020-17657-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/13/2020] [Indexed: 01/16/2023] Open
Abstract
Developing highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is critical for many energy devices. While regulating the proton-coupled electron transfer (PCET) process via introducing additive into the system has been reported effective in promoting OER activity, controlling the PCET process by tuning the intrinsic material properties remains a challenging task. In this work, we take double perovskite oxide PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) as a model system to demonstrate enhancing OER activity through the promotion of PCET by tuning the crystal orientation and correlated proton diffusion. OER kinetics on PBSCF thin films with (100), (110), and (111) orientation, deposited on single crystal LaAlO3 substrates, were investigated using electrochemical measurements, density functional theory (DFT) calculations, and synchrotron-based near ambient X-ray photoelectron spectroscopy. The results clearly show that the OER activity and the ease of deprotonation depend on orientation and follow the order of (100) > (110) > (111). Correlated with OER activity, proton diffusion is found to be the fastest in the (100) film, followed by (110) and (111) films. Our results point out a way of boosting PCET and OER activity, which can also be successfully applied to a wide range of crucial applications in green energy and environment.
Collapse
|
16
|
Saha J, Kumar A, PM A, Jakhad V. Oxidised charcoal: an efficient support for NiFe layered double hydroxide to improve electrochemical oxygen evolution. Chem Commun (Camb) 2020; 56:8770-8773. [DOI: 10.1039/d0cc02880k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NiFeLDH/oxidised charcoal showed excellent activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm−2, which is ∼115 mV less than that of NiFeLDH.
Collapse
Affiliation(s)
- Jony Saha
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| | - Ashok Kumar
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| | - Anjana PM
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| | - Vikash Jakhad
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| |
Collapse
|
17
|
Takashima T, Hemmi S, Liu Q, Irie H. Facet-dependent activity of hematite nanocrystals toward the oxygen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00655f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematite showed facet-dependent OER activity and its origin was investigated based on in situ UV-vis absorption measurements and theoretical calculations.
Collapse
Affiliation(s)
- Toshihiro Takashima
- Clean Energy Research Center
- University of Yamanashi
- Kofu
- Japan
- Integrated Graduate School of Medicine, Engineering and Agricultural Sciences
| | - Shota Hemmi
- Integrated Graduate School of Medicine, Engineering and Agricultural Sciences
- University of Yamanashi
- Kofu
- Japan
| | - Qingyu Liu
- Department of Applied Chemistry
- Faculty of Engineering
- University of Yamanashi
- Kofu
- Japan
| | - Hiroshi Irie
- Clean Energy Research Center
- University of Yamanashi
- Kofu
- Japan
- Integrated Graduate School of Medicine, Engineering and Agricultural Sciences
| |
Collapse
|