1
|
Kang J, Ding K, Ren SM, Yang WJ, Su B. Copper-Catalyzed Enantioselective Hydrophosphorylation of Unactivated Alkynes. Angew Chem Int Ed Engl 2025; 64:e202415314. [PMID: 39368100 DOI: 10.1002/anie.202415314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/07/2024]
Abstract
P-stereogenic phosphorus compounds are essential across various fields, yet their synthesis via enantioselective P-C bond formation remains both challenging and underdeveloped. We report the first copper-catalyzed enantioselective hydrophosphorylation of alkynes, facilitated by a newly designed chiral 1,2-diamine ligand. Unlike previous methods that rely on kinetic resolution with less than 50 % conversion, our approach employs a distinct dynamic kinetic asymmetric transformation mechanism, achieving complete conversion of racemic starting materials. This reaction is compatible with a broad range of aromatic and aliphatic terminal alkynes, producing products with high yields (up to 95 %), exclusive cis selectivity, and exceptional regio- and enantioselectivity (>20 : 1 r.r. and up to 96 % ee). The resulting products were further transformed into a diverse array of enantioenriched P-stereogenic scaffolds. Preliminary mechanistic studies were conducted to elucidate the reaction details.
Collapse
Affiliation(s)
- Jie Kang
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Kang Ding
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Si-Mu Ren
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Wen-Jun Yang
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Bo Su
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| |
Collapse
|
2
|
Abeynayake NS, Le N, Sanchez-Lecuona G, Donnadieu B, Webster CE, Montiel-Palma V. Unexpected alkyl isomerization at the silicon ligand of an unsaturated Rh complex: combined experiment and theory. Dalton Trans 2023; 52:16159-16166. [PMID: 37877892 DOI: 10.1039/d3dt02087h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The formation of dimer [(μ-Cl)Rh-(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)(o-C6H4CH2SiiPrnPr))]2 (Rh-3) with an n-propyl group on one of the silicon atoms as a minor product was affected by the reaction of [RhCl(COD)]2 with proligand PhP(o-C6H4CH2SiHiPr2)2, L1. The major product of the reaction was monomeric 14-electron Rh(III) complex [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2)] (Rh-1). Computations revealed that the monomer-dimer equilibrium is shifted toward the monomer with four isopropyl substituents on the two Si atoms of the ligand as in Rh-1; conversely, the dimer is favored with only one n-propyl as in Rh-3, and with less bulky alkyl substituents such as in [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiMe2)2]2 (Rh-2). Computations on the mechanism of formation of Rh-3 directly from [RhCl(COD)]2 are in agreement with the experimental findings and it is found to be less energetic than if stemming from Rh-1. Additionally, a Si-O-Si complex, [μ-Cl-Rh{κ3(P,Si,C)PPh(o-C6H4CH2SiiPrO SiiPr2CH-o-C6H4)}]2, Rh-4, is generated from the reaction of Rh-1 with adventitious water as a result of intramolecular C-H activation.
Collapse
Affiliation(s)
- Niroshani S Abeynayake
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, USA.
| | - Nghia Le
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, USA.
| | - Gabriela Sanchez-Lecuona
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, USA.
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, USA.
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, USA.
| | - Virginia Montiel-Palma
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, USA.
| |
Collapse
|
3
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Hedouin G, Hazra S, Gallou F, Handa S. The Catalytic Formation of Atropisomers and Stereocenters via Asymmetric Suzuki–Miyaura Couplings. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gaspard Hedouin
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Susanta Hazra
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, Basel 4056, Switzerland
| | - Sachin Handa
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Kadu BS. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02059a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suzuki–Miyaura cross coupling reaction (SMCR) – A milestone in the synthesis of C–C coupled compounds.
Collapse
|