1
|
Hu XY, Liu DY, Zhang CZ, Wen MM, Ren XX, Zhang SS, Liu XG. Synthesis of 2-glycosyl-quinazolines and 5-glycosyl-pyrazolo[1,2- a]cinnolines by Cp*Ir(III)-catalyzed C-H activation/cyclization. Chem Commun (Camb) 2025; 61:6142-6145. [PMID: 40152639 DOI: 10.1039/d5cc00265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A novel strategy for the synthesis of 2-glycosyl-quinazolines and 5-glycosyl-pyrazolo[1,2-a]cinnolines has been established through an Ir-catalyzed C-H activation/annulation process. This approach features mild reaction conditions, exhibits good tolerance to diverse functional groups, and facilitates the stereoselective construction of heterocyclic C-glycosides. Significantly, this method is amenable to the late-stage modification of structurally intricate natural products, thus holding great potential in the field of organic synthesis and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Deng-Yin Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xiao-Xi Ren
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China.
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Fang Y, Ma W, Zhou Z, Wang X, Chen X, Wang J, Wang X. Convenient Synthesis of β-C-Acyl Glycosides and its Application in the Synthesis of Scleropentaside A, Scleropentaside B and the Derivatives of Dapagliflozin. Chemistry 2025; 31:e202500044. [PMID: 39981581 DOI: 10.1002/chem.202500044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
C-Glycosides are a common feature in numerous bioactive natural compounds and play a crucial role as mimics of O/N-glycosides. Our process for synthesizing β-C-acyl glycosides involves a reductive cross-coupling of protected glycosyl bromides with the corresponding carboxylic acid, followed by base-assisted deprotection and isomerization. This method is compatible with diverse glycosyl donors, including disaccharides. Consequently, we achieved the total synthesis of the natural products scleropentaside A and scleropentaside B with exceptional efficiency. These β-C-acyl glycosides can be readily transformed into novel forms of C-glycosides capable of disrupting signaling pathways linked to various pathological conditions, such as diabetes.
Collapse
Affiliation(s)
- Ya Fang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of, Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Ma
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of, Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaobo Zhou
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of, Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xuanjia Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xi Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiaxiang Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of, Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary, Medicine, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Tsogoeva SB, Schanze K. Organic Synthesis and Catalysis Enable Facile Access to Bioactive Compounds and Drugs. ACS CENTRAL SCIENCE 2025; 11:1-5. [PMID: 39866703 PMCID: PMC11758363 DOI: 10.1021/acscentsci.4c02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
|
4
|
Xu D, Li X, Cui Z, Cao L, Cheng HG, Zhou Q. Practical synthesis of C-aryl glycosides via redox-neutral Borono-Catellani reaction. Chem Commun (Camb) 2025; 61:736-739. [PMID: 39663863 DOI: 10.1039/d4cc05665e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we describe a practical Borono-Catellani strategy for the efficient synthesis of C-aryl glycosides, with readily available arylboronic esters and glycosyl chlorides as the building blocks. It features mild reaction conditions, excellent diastereoselectivities, and good functional group tolerance. A diverse array of highly decorated C-(hetero)aryl glycosides are obtained in a convergent and redox-neutral manner.
Collapse
Affiliation(s)
- Dekang Xu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Xia Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Ziyang Cui
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Liming Cao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
5
|
Cheng G, Yang B, Han Y, Lin W, Tao S, Nian Y, Li Y, Walczak MA, Zhu F. Pd-Catalyzed Stereospecific Glycosyl Cross-Coupling of Reversed Anomeric Stannanes for Modular Synthesis of Nonclassical C-Glycosides. PRECISION CHEMISTRY 2024; 2:587-599. [PMID: 39611026 PMCID: PMC11600346 DOI: 10.1021/prechem.4c00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 11/30/2024]
Abstract
Nonclassical C-glycosides, distinguished by their unique glycosidic bond connection mode, represent a promising avenue for the development of carbohydrate-based drugs. However, the accessibility of nonclassical C-glycosides hinders broader investigations into their structural features and modes of action. Herein, we present the first example of Pd-catalyzed stereospecific glycosylation of nonclassical anomeric stannanes with aryl or vinyl halides. This method furnishes desired nonclassical aryl and vinyl C-glycosides in good to excellent yields, while allowing for exclusive control of nonclassical anomeric configuration. Of significant note is the demonstration of the generality and practicality of this nonclassical C-glycosylation approach across more than 50 examples, encompassing various protected and unprotected saccharides, deoxy sugars, oligopeptides, and complex molecules. Furthermore, biological evaluation indicates that nonclassical C-glycosylation modifications of drug molecules can positively impact their biological activity. Additionally, extensive computational studies are conducted to elucidate the rationale behind differences in reaction reactivity, unveiling a transmetalation transition state containing silver (Ag) within a six-membered ring. Given its remarkable controllability, predictability, and consistently high chemical selectivity and stereospecificity regarding nonclassical anomeric carbon and Z/E configuration, the method outlined in this study offers a unique solution to the longstanding challenge of accessing nonclassical C-glycosides with exclusive stereocontrol.
Collapse
Affiliation(s)
- Guoqiang Cheng
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bo Yang
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Han
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Lin
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Siyuan Tao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yong Nian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yingzi Li
- Institute
of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Maciej A. Walczak
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Feng Zhu
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Xie D, Zeng W, Yang J, Ma X. Visible-light-promoted direct desulfurization of glycosyl thiols to access C-glycosides. Nat Commun 2024; 15:9187. [PMID: 39448612 PMCID: PMC11502824 DOI: 10.1038/s41467-024-53563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
C-Glycosides are essential for the study of biological processes and the development of carbohydrate-based drugs. Despite the tremendous hurdles, glycochemists have often fantasized about the efficient, highly stereoselective synthesis of C-glycosides with the shortest steps under mild conditions. Herein, we report a desulfurative radical protocol to synthesize C-alkyl glycosides and coumarin C-glycosides under visible-light induced conditions without the need of an extra photocatalyst, in which stable and readily available glycosyl thiols that could be readily obtained from native sugars are activated in situ by pentafluoropyridine. The benefits of this procedure include high stereoselectivity, broad substrate scope, and easy handling. Mechanistic studies indicate that the in situ produced tetrafluoropyridyl S-glycosides form key electron donor-acceptor (EDA) complexes with Hantzsch ester (for C-alkyl glycosides) or Et3N (for coumarin C-glycosides), which, upon irradiation with visible light, trigger a cascade of glycosyl radical processes to access C-glycosides smoothly.
Collapse
Affiliation(s)
- Demeng Xie
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zeng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Yang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Ma
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
7
|
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI 2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024; 29:4710. [PMID: 39407638 PMCID: PMC11477539 DOI: 10.3390/molecules29194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
8
|
Liu DY, Ruan YJ, Wang XL, Hu XY, Wang PF, Wen MM, Zhang CZ, Xiao YH, Liu XG. Concise synthesis of 3- C-glycosyl isocoumarins and 2-glycosyl-4 H-chromen-4-ones. Chem Commun (Camb) 2024; 60:10390-10393. [PMID: 39224044 DOI: 10.1039/d4cc03004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new Ru-catalyzed C-H activation/cyclization reaction for the synthesis of 3-C-glycosyl isocoumarins and 2-glycosyl-4H-chromen-4-ones with carbonyl sulfoxonium ylide glycogen are reported. In this catalytic system, benzoic acid and its derivatives react with carbonyl sulfoxonium ylide glycogen to yield isocoumarin C-glycosides, while 2-hydroxybenzaldehyde substrates react to produce chromone C-glycosides. These reactions were characterized by mild reaction conditions, broad substrate scope, high functional-group compatibility, and high stereoselectivity to yield several high-value isocoumarins and chromone skeleton-containing C-glycosides. The methods were successfully implemented in the context of large-scale reactions and the late-stage modification of complex natural products.
Collapse
Affiliation(s)
- Deng-Yin Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Yu-Jun Ruan
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xiao-Li Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Peng-Fei Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Yu-He Xiao
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
9
|
Liu DY, Wang PF, Ruan YJ, Wang XL, Hu XY, Yang Q, Liu J, Wen MM, Zhang CZ, Xiao YH, Liu XG. Assembly of Heterocyclic C-Glycosides by Ru-Catalyzed C-H Activation/Cyclization with Carbonyl Sulfoxonium Ylide Glyco-Reagents. Org Lett 2024; 26:5092-5097. [PMID: 38848493 DOI: 10.1021/acs.orglett.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
New carbonyl sulfoxonium ylide glyco-reagents have been developed, enabling the synthesis of versatile heteroarene C-glycosides through a Ru-catalyzed C-H activation/annulation strategy. These reactions tolerate various saccharide donors and represent a significant advance in the stereoselective synthesis of heterocyclic C-glycosides. Furthermore, the strategy and methods could be applied to large-scale reactions and late-stage modifications of some structurally complex natural products or drugs.
Collapse
Affiliation(s)
- Deng-Yin Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Peng-Fei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Jun Ruan
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Li Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Qian Yang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Jing Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-He Xiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
10
|
Chen A, Han Y, Wu R, Yang B, Zhu L, Zhu F. Palladium-catalyzed Suzuki-Miyaura cross-couplings of stable glycal boronates for robust synthesis of C-1 glycals. Nat Commun 2024; 15:5228. [PMID: 38898022 PMCID: PMC11187158 DOI: 10.1038/s41467-024-49547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
C-1 Glycals serve as pivotal intermediates in synthesizing diverse C-glycosyl compounds and natural products, necessitating the development of concise, efficient and user-friendly methods to obtain C-1 glycosides is essential. The Suzuki-Miyaura cross-coupling of glycal boronates is notable for its reliability and non-toxic nature, but glycal donor stability remains a challenge. Herein, we achieve a significant breakthrough by developing stable glycal boronates, effectively overcoming the stability issue in glycal-based Suzuki-Miyaura coupling. Leveraging the balanced reactivity and stability of our glycal boronates, we establish a robust palladium-catalyzed glycal-based Suzuki-Miyaura reaction, facilitating the formation of various C(sp2)-C(sp), C(sp2)-C(sp2), and C(sp2)-C(sp3) bonds under mild conditions. Notably, we expand upon this achievement by developing the DNA-compatible glycal-based cross-coupling reaction to synthesize various glycal-DNA conjugates. With its excellent reaction reactivity, stability, generality, and ease of handling, the method holds promise for widespread appication in the preparation of C-glycosyl compounds and natural products.
Collapse
Grants
- We are grateful for financial support from the National Key R&D Program of China (Grant No. 2023YFA1508800, F. Z.), National Science Foundation (Grant No. 22301178, F. Z.), Shanghai Pilot Program for Basic Research - Shanghai Jiao Tong University (Grant No. 21TQ1400210, F. Z.), Fundamental Research Funds for the Central Universities (Grant No. 22X010201631, F. Z.), the Open Grant from the Pingyuan Laboratory (Grant No. 2023PY-OP-0102, F. Z.), Natural Science Foundation of Shanghai (Grant No. 21ZR1435600, F. Z.), Shanghai Sailing Program (Grant No 21YF1420600, F. Z.). Part of this study was supported by the National Science Foundation (Grant No. 22301180, B. Y.).
Collapse
Affiliation(s)
- Anrong Chen
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Han
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Rongfeng Wu
- Discovery Chemistry Unit, HitGen Inc., Chengdu, Sichuan, PR China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, PR China.
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
11
|
Samantaray S, Maharana PK, Kar S, Saha S, Punniyamurthy T. Redox-neutral zinc-catalyzed cascade [1,4]-H shift/annulation of diaziridines with donor-acceptor aziridines. Chem Commun (Camb) 2024; 60:3441-3444. [PMID: 38445334 DOI: 10.1039/d4cc00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The coupling of diaziridines with donor-acceptor aziridines (DAAs) has been achieved using Zn-catalysis to furnish imidazopyrazole-4,4-dicarboxylates via [1,4]-hydride shift. The use of Zn-catalysis, [1,4]-hydride shift, natural product modification and a late-stage molecular docking study are important practical features.
Collapse
Affiliation(s)
- Swati Samantaray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
12
|
Wei X, Zeng M, Li Y, Wang D, Wang J, Liu H. Palladium(II)-Catalyzed Heck Coupling: Direct Stereoselective Synthesis of C-Aryl Glycosides from Nonactivated Glycals and Thianthrenium Salts. Org Lett 2024. [PMID: 38498594 DOI: 10.1021/acs.orglett.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Here, we report an efficient Pd(II)-catalyzed Heck coupling reaction utilizing modular and readily available thianthrenium salts. The tunability and ease of thianthrenium salts facilitated the integration of glycals with drugs, natural products, and peptides. This method allows the incorporation of diverse glycals into structurally varied aglycon components without directing groups or prefunctionalization and provides a practical method for synthesizing C-aryl glycosides, offering a new avenue for the production of complex glycosides with potential applications.
Collapse
Affiliation(s)
- Xinxin Wei
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingjie Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dechuan Wang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
13
|
Zhang XL, Wang MY, Liu HJ, Wang YQ. Palladium-Catalyzed Regioselective C4-H Acyloxylation of Indoles with Carboxylic Acids via a Transient Directing Groups Strategy. Org Lett 2024; 26:41-45. [PMID: 38149590 DOI: 10.1021/acs.orglett.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of an efficient method for the synthesis of C4 oxy-substituted indoles is an appealing yet challenging task. Herein, we report a general palladium-catalyzed TDG approach for the direct C4-H acyloxylation of indoles. The protocol features atom and step economy, excellent regioselectivity, and good tolerance of functional groups. Moreover, the reaction can accommodate a range of carboxylic acids including benzoic acids, phenylacetic acids, and aliphatic acids.
Collapse
Affiliation(s)
- Xing-Long Zhang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Hui-Jin Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
14
|
Yeom S, Kim DY, Kim S, Gontala A, Park J, Lee YH, Kim HJ. Carboxylate-Directed Pd-Catalyzed β-C(sp 3)-H Arylation of N-Methyl Alanine Derivatives for Diversification of Bioactive Peptides. Org Lett 2023; 25:9008-9013. [PMID: 38084750 DOI: 10.1021/acs.orglett.3c03616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study presents a Pd(II)-catalyzed method for the β-C(sp3)-H arylation of N-Cbz- or N-Fmoc-protected N-methyl alanines, providing ready access to building blocks for N-methylated peptide synthesis. For this transformation, the native carboxylate was exploited as the directing group, attributing its success to the use of a monoprotected amino-pyridine ligand. Its synthetic utility was demonstrated by facile generation of nine analogues of the naturally occurring N-methylated cyclic peptide cycloaspeptide A.
Collapse
Affiliation(s)
- Suyeon Yeom
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Do Young Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Seungwoo Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Arjun Gontala
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Jimin Park
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Yong Ho Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Wang Q, Guo F, Wang J, Lei X. Divergent total syntheses of ITHQ-type bis-β-carboline alkaloids by regio-selective formal aza-[4 + 2] cycloaddition and late-stage C-H functionalization. Chem Sci 2023; 14:10353-10359. [PMID: 37772099 PMCID: PMC10530148 DOI: 10.1039/d3sc03722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
We herein report the first total syntheses of several bis-β-carboline alkaloids, picrasidines G, S, R, and T, and natural product-like derivatives in a divergent manner. Picrasidines G, S, and T feature an indolotetrahydroquinolizinium (ITHQ) skeleton, while picrasidine R possesses a 1,4-diketone linker between two β-carboline fragments. The synthesis of ITHQ-type bis-β-carboline alkaloids could be directly achieved by a late-stage regio-selective aza-[4 + 2] cycloaddition of vinyl β-carboline alkaloids, suggesting that this remarkable aza-[4 + 2] cycloaddition might be involved in the biosynthetic pathway. Computational studies revealed that such aza-[4 + 2] cycloaddition is a stepwise process and explained the unique regioselectivity (ΔΔG = 3.77 kcal mol-1). Moreover, the successful application of iridium-catalyzed C-H borylation on β-carboline substrates enabled the site-selective C-8 functionalization for efficient synthesis and structural diversification of this family of natural products. Finally, concise synthesis of picrasidine R by the thiazolium-catalyzed Stetter reaction was also accomplished.
Collapse
Affiliation(s)
- Qixuan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 P. R. China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 P. R. China
| | - Jin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 P. R. China
| | - Xiaoguang Lei
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 P. R. China
- Institute for Cancer Research, Shenzhen Bay Laboratory Shenzhen 518107 P. R. China
| |
Collapse
|