1
|
Hong G, Pachter R. Effects of inter-radical interactions and scavenging radicals on magnetosensitivity: spin dynamics simulations of proposed radical pairs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:27-37. [PMID: 36792823 DOI: 10.1007/s00249-023-01630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Although the magnetosensitivity to weak magnetic fields, such as the geomagnetic field, which was exhibited by radical pairs that are potentially responsible for avian navigation, has been previously investigated by spin dynamics simulations, understanding this behavior for proposed radical pairs in other species is limited. These include, for example, radical pairs formed in the single-cell green alga Chlamydomonas reinhardtii (CraCRY) and in Columba livia (ClCRY4). In addition, the radical pair of FADH• with the one-electron reduced cyclobutane thymine dimer that was shown to be sensitive to weak magnetic fields has been of interest. In this work, we investigated the directional magnetosensitivity of these radical pairs to a weak magnetic field by spin dynamics simulations. We find significant reduction in the magnetosensitivity by inclusion of dipolar and exchange interactions, which can be mitigated by a scavenging radical, as demonstrated for the [FAD•- TyrD•] radical pair in CraCRY, but not for the [FADH• T□T•-] radical pair because of the large exchange coupling. The directional magnetosensitivity of the ClCRY4 [FAD•- TyrE•] radical pair can survive this adverse effect even without the scavenging reaction, possibly motivating further experimental exploration.
Collapse
Affiliation(s)
- Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, 45433, USA
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, 45433, USA.
| |
Collapse
|
2
|
Kerpal C, Richert S, Storey JG, Pillai S, Liddell PA, Gust D, Mackenzie SR, Hore PJ, Timmel CR. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat Commun 2019; 10:3707. [PMID: 31420558 PMCID: PMC6697675 DOI: 10.1038/s41467-019-11655-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022] Open
Abstract
The fact that many animals, including migratory birds, use the Earth's magnetic field for orientation and compass-navigation is fascinating and puzzling in equal measure. The physical origin of these phenomena has not yet been fully understood, but arguably the most likely hypothesis is based on the radical pair mechanism (RPM). Whilst the theoretical framework of the RPM is well-established, most experimental investigations have been conducted at fields several orders of magnitude stronger than the Earth's. Here we use transient absorption spectroscopy to demonstrate a pronounced orientation-dependence of the magnetic field response of a molecular triad system in the field region relevant to avian magnetoreception. The chemical compass response exhibits the properties of an inclination compass as found in migratory birds. The results underline the feasibility of a radical pair based avian compass and also provide further guidelines for the design and operation of exploitable chemical compass systems.
Collapse
Affiliation(s)
- Christian Kerpal
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jonathan G Storey
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Smitha Pillai
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Paul A Liddell
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Devens Gust
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Stuart R Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - P J Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
3
|
Atkins C, Bajpai K, Rumball J, Kattnig DR. On the optimal relative orientation of radicals in the cryptochrome magnetic compass. J Chem Phys 2019. [DOI: 10.1063/1.5115445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chadsley Atkins
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
| | - Kieran Bajpai
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
| | - Jeremy Rumball
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
| | - Daniel R. Kattnig
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|