1
|
Warren J, Wang J, Dhoro F, Chao B, Reddy A, Petrie SK, David LL, Xiao X, Li BX. SMAP3-ID for Identification of Endogenous Protein-Protein Interactions Reveals Regulation of Mitochondrial Activity by Lamins. JACS AU 2025; 5:302-319. [PMID: 39886595 PMCID: PMC11775715 DOI: 10.1021/jacsau.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Proteins regulate biological functions through the formation of distinct protein complexes. Identification and characterization of these protein-protein interactions are critical to deciphering their mechanism of action. Different antibody-based or cross-linking-based methods have been developed to identify the protein-protein interactions. However, these methods require genetic engineering or other means to disrupt the native environments. To circumvent this limitation, we introduce here SMAP3-ID (small-molecule-assisted identification of protein-protein interactions through proximity) method to identify protein-protein interactions in native cellular environment. This method combines a selective ligand for binding to a protein of interest for photo-cross-linking, a live-cell-compatible bioorthogonal click reaction with a trifunctional chemical probe, and a final photo-cross-linking reaction to covalently capture the interacting proteins. Using the SMAP3-ID method and nuclear lamins as an example, we identified numerous lamin interactors in native cells. Significantly, we identified a number of mitochondrial enzymes as novel lamin A (LA) interactors. The interactions between mitochondrial enzymes and LA were further validated, which provides mechanistic insights underlying the metabolic alterations caused by mutations in LA. Furthermore, our previously described small-molecule ligand for LA, LBL1, also induced changes in mitochondrial activity and cellular bioenergetic organization. We conclude that SMAP3-ID is a potentially powerful and generalizable method to identify protein-protein interactions in the native cellular environment.
Collapse
Affiliation(s)
- Julia Warren
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Jian Wang
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Francis Dhoro
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Bo Chao
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Ashok Reddy
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Stefanie Kaech Petrie
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Larry L. David
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Xiangshu Xiao
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| | - Bingbing X. Li
- Program
in Chemical Biology, Department of Chemical Physiology and
Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States
| |
Collapse
|
2
|
Pérez-Rubio P, Romero EL, Cervera L, Gòdia F, Nielsen LK, Lavado-García J. Systematic insights into cell density-dependent transcriptional responses upon medium replacements. Biomed Pharmacother 2024; 181:117640. [PMID: 39486366 DOI: 10.1016/j.biopha.2024.117640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Understanding the molecular mechanisms governing transfection efficiency and particle secretion in high cell density cultures is critical to overcome the cell density effect upon transient gene expression. The effect of different conditioned media in HEK293 transcriptome at low and high cell density is explored. A systematic pair-wise comparative study was performed to shed light on the effect on previous phenotypical characteristics of different media conditions: fresh, exhausted and media depleted from extracellular vesicles (EVs) as well as associated proteins and RNAs. The obtained results suggest that restorative effects observed in transfection efficiency when employing EV-depleted media may arise predominantly from physicochemical alterations rather than cellular processes. A significant downregulation of genes associated with nucleocytoplasmic transport for the conditions involving the use of exhausted or EV-depleted media was observed. Moreover, upregulation of histone-related genes in EV-depleted media suggest a role for histone signaling in response to cellular stress or growth limitations, thereby highlighting the potential of manipulating histone levels as a promising strategy to enhance transient transfection. It was also corroborated that the accumulation of extracellular matrix proteins upon cell growth may inhibit transfection by an already-known competitive effect between cell membrane-bound and free proteoglycans. Proteomic characterization of EV-depleted media further unveiled enrichment of pathways associated with infection response and double-strand DNA breaks, suggesting that HEK293 cells undergo an induced infection-like state that disrupts cellular processes. Importantly, the study reveals that EV-depleted media stimulates virion release pathways underscoring the complex interplay between extracellular vesicles and viral budding.
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain.
| | - Elianet Lorenzo Romero
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Laura Cervera
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Lars Keld Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
3
|
Pereira RT, Samarakone C, Bridger JM, de Castro IJ. Pushing the envelope - How the genome interacts with the nuclear envelope in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:155-190. [PMID: 39843135 DOI: 10.1016/bs.apcsb.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The nuclear envelope has for long been considered more than just the physical border between the nucleoplasm and the cytoplasm, emerging as a crucial player in genome organisation and regulation within the 3D nucleus. Consequently, its study has become a valuable topic in the research of cancer, ageing and several other diseases where chromatin organisation is compromised. In this chapter, we will delve into its several sub-elements, such as the nuclear lamina, nuclear pore complexes and nuclear envelope proteins, and their diverse roles in nuclear function and maintenance. We will explore their functions beyond nuclear structure and transport focusing on their interactions with chromatin and their paramount influence in its organisation, regulation and expression at the nuclear periphery. Finally, we will outline how this chromatin organisation and regulation at the nuclear envelope is affected in diseases, including laminopathies, cancer, neurodegenerative diseases and during viral infections.
Collapse
Affiliation(s)
- Rita Torres Pereira
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Cresentia Samarakone
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Joanna M Bridger
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Ines J de Castro
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom.
| |
Collapse
|
4
|
Wang J, Chao B, Piesner J, Kelly F, Petrie SK, Xiao X, Li BX. CG-SLENP: A Chemical Genetics Strategy To Selectively Label Existing Proteins and Newly Synthesized Proteins. JACS AU 2024; 4:3146-3156. [PMID: 39211582 PMCID: PMC11350722 DOI: 10.1021/jacsau.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Protein synthesis and subsequent delivery to the target locations in cells are essential for their proper functions. Methods to label and distinguish newly synthesized proteins from existing ones are critical to assess their differential properties, but such methods are lacking. We describe the first chemical genetics-based approach for selective labeling of existing and newly synthesized proteins that we termed as CG-SLENP. Using HaloTag in-frame fusion with lamin A (LA), we demonstrate that the two pools of proteins can be selectively labeled using CG-SLENP in living cells. We further employ our recently developed selective small molecule ligand LBL1 for LA to probe the potential differences between newly synthesized and existing LA. Our results show that LBL1 can differentially modulate these two pools of LA. These results indicate that the assembly states of newly synthesized LA are distinct from existing LA in living cells. The CG-SLENP method is potentially generalizable to study any cellular proteins.
Collapse
Affiliation(s)
- Jian Wang
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Bo Chao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Jake Piesner
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Felice Kelly
- Advanced
Light Microscopy Shared Resource, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Stefanie Kaech Petrie
- Department
of Neurology, Knight Cancer Institute, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Xiangshu Xiao
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Bingbing X. Li
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
5
|
Kim SJ, Park SH, Myung K, Lee KY. Lamin A/C facilitates DNA damage response by modulating ATM signaling and homologous recombination pathways. Anim Cells Syst (Seoul) 2024; 28:401-416. [PMID: 39176289 PMCID: PMC11340224 DOI: 10.1080/19768354.2024.2393820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Lamin A/C, a core component of the nuclear lamina, forms a mesh-like structure beneath the inner nuclear membrane. While its structural role is well-studied, its involvement in DNA metabolism remains unclear. We conducted sequential protein fractionation to determine the subcellular localization of early DNA damage response (DDR) proteins. Our findings indicate that most DDR proteins, including ATM and the MRE11-RAD50-NBS1 (MRN) complex, are present in the nuclease - and high salt-resistant pellet fraction. Notably, ATM and MRN remain stably associated with these structures throughout the cell cycle, independent of ionizing radiation (IR)-induced DNA damage. Although Lamin A/C interacts with ATM and MRN, its depletion does not disrupt their association with nuclease-resistant structures. However, it impairs the IR-enhanced association of ATM with the nuclear matrix and ATM-mediated DDR signaling, as well as the interaction between ATM and MRN. This disruption impedes the recruitment of MRE11 to damaged DNA and the association of damaged DNA with the nuclear matrix. Additionally, Lamin A/C depletion results in reduced protein levels of CtIP and RAD51, which is mediated by transcriptional regulation. This, in turn, impairs the efficiency of homologous recombination (HR). Our findings indicate that Lamin A/C plays a pivotal role in DNA damage repair (DDR) by orchestrating ATM-mediated signaling, maintaining HR protein levels, and ensuring efficient DNA repair processes.
Collapse
Affiliation(s)
- Seong-jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
6
|
Li BX, David LL, Davis LE, Xiao X. Protein arginine methyltransferase 5 is essential for oncogene product EWSR1-ATF1-mediated gene transcription in clear cell sarcoma. J Biol Chem 2022; 298:102434. [PMID: 36041632 PMCID: PMC9513783 DOI: 10.1016/j.jbc.2022.102434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription dysregulation is common in sarcomas driven by oncogenic transcription factors. Clear cell sarcoma of soft tissue (CCSST) is a rare sarcoma with poor prognosis presently with no therapy. It is characterized by a balanced t(12;22) (q13;q12) chromosomal translocation, resulting in a fusion of the Ewing's sarcoma gene EWSR1 with activating transcription factor 1 (ATF1) to give an oncogene EWSR1-ATF1. Unlike normal ATF1, whose transcription activity is dependent on phosphorylation, EWSR1-ATF1 is constitutively active to drive ATF1-dependent gene transcription to cause tumorigenesis. No EWSR1-ATF1-targeted therapies have been identified due to the challenges in targeting intracellular transcription factors. Through proteomics screening to identify potential druggable targets for CCSST, we discovered protein arginine methyltransferase 5 (PRMT5) as a novel protein to interact with EWSR1-ATF1. PRMT5 is a type II protein arginine methyltransferase to symmetrically dimethylate arginine residues in substrate proteins to regulate a diverse range of activities including gene transcription, RNA splicing, and DNA repair. We found that PRMT5 enhances EWSR1-ATF1-mediated gene transcription to sustain CCSST cell proliferation. Genetic silencing of PRMT5 in CCSST cells resulted in severely impaired cell proliferation and EWSR1-ATF1-driven transcription. Furthermore, we demonstrate that the clinical-stage PRMT5 inhibitor JNJ-64619178 potently and efficaciously inhibited CCSST cell growth in vitro and in vivo. These results provide new insights into PRMT5 as a transcription regulator and warrant JNJ-64619178 for further clinical development to treat CCSST patients.
Collapse
Affiliation(s)
- Bingbing X Li
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, USA.
| | - Larry L David
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Lara E Davis
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA; Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, USA
| | - Xiangshu Xiao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, USA.
| |
Collapse
|
7
|
Martín-Acosta P, Meng Q, Klimek J, Reddy AP, David L, Petrie SK, Li BX, Xiao X. A clickable photoaffinity probe of betulinic acid identifies tropomyosin as a target. Acta Pharm Sin B 2022; 12:2406-2416. [PMID: 35646545 PMCID: PMC9136574 DOI: 10.1016/j.apsb.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Target identification of bioactive compounds is important for understanding their mechanisms of action and provides critical insights into their therapeutic utility. While it remains a challenge, unbiased chemoproteomics strategy using clickable photoaffinity probes is a useful and validated approach for target identification. One major limitation of this approach is the efficient synthesis of appropriately substituted clickable photoaffinity probes. Herein, we describe an efficient and consistent method to prepare such probes. We further employed this method to prepare a highly stereo-congested probe based on naturally occurring triterpenoid betulinic acid. With this photoaffinity probe, we identified tropomyosin as a novel target for betulinic acid that can account for the unique biological phenotype on cellular cytoskeleton induced by betulinic acid.
Collapse
Affiliation(s)
- Pedro Martín-Acosta
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Qianli Meng
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Klimek
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashok P. Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Larry David
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stefanie Kaech Petrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bingbing X. Li
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Abstract
Lamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.
Collapse
Affiliation(s)
- Xianrong Wong
- Laboratory of Developmental and Regenerative Biology, Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138648
| | - Ashley J Melendez-Perez
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
9
|
Abstract
Two sets of bioorthogonally applicable, double fluorogenic probes, capable of sensing DNA–protein interactions, were prepared by installing an azide or tetrazine motif onto structurally fluorogenic, DNA sensitive frames. Installation of these bioorthogonal functions onto DNA intercalating dyes furnished these scaffolds with reactivity based fluorogenicity, rendering these probes double-fluorogenic, AND-type logic switches that require the simultaneous occurrence of a bioorthogonal reaction and interaction with DNA to trigger high intensity fluorescence. The probes were evaluated for double fluorogenic behavior in the presence/absence of DNA and a complementary bioorthogonal function. Our studies revealed that azide and tetrazine appending thiazole orange frames show remarkable double fluorogenic features. One of these probes, a membrane permeable tetrazine modified thiazole orange derivative was further tested in live cell labeling studies. Cells expressing bioorthogonalized DNA-binding proteins showed intensive fluorescence characteristics of the localization of the proteins upon treatment with our double fluorogenic probe. On the contrary, labeling similarly bioorthogonalized cytosolic proteins did not result in the appearance of the fluorescence signal. These studies suggest that such double-fluorogenic probes are indeed capable of sensing DNA–protein interactions in cells.
Collapse
|
10
|
Graziano S, Coll-Bonfill N, Teodoro-Castro B, Kuppa S, Jackson J, Shashkova E, Mahajan U, Vindigni A, Antony E, Gonzalo S. Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability. J Biol Chem 2021; 297:101301. [PMID: 34648766 PMCID: PMC8571089 DOI: 10.1016/j.jbc.2021.101301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lamin A/C provides a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. Lamin A/C dysfunction is associated with cancer, aging, and degenerative diseases. The mechanisms whereby lamin A/C regulates genome stability remain poorly understood. We demonstrate a crucial role for lamin A/C in DNA replication. Lamin A/C binds to nascent DNA, especially during replication stress (RS), ensuring the recruitment of replication fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, function in the stabilization, remodeling, and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamin A/C depletion elicits replication fork instability (RFI) characterized by MRE11 nuclease–mediated degradation of nascent DNA, RS-induced DNA damage, and sensitivity to replication inhibitors. Importantly, unlike homologous recombination–deficient cells, RFI in lamin A/C-depleted cells is not linked to replication fork reversal. Thus, the point of entry of nucleases is not the reversed fork but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamin A/C-depleted cells is rescued by exogenous overexpression of RPA or RAD51. These data unveil involvement of structural nuclear proteins in the protection of ssDNA from nucleases during RS by promoting recruitment of RPA and RAD51 to stalled forks. Supporting this model, we show physical interaction between RPA and lamin A/C. We suggest that RS is a major source of genomic instability in laminopathies and lamin A/C-deficient tumors.
Collapse
Affiliation(s)
- Simona Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Nuria Coll-Bonfill
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Barbara Teodoro-Castro
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Sahiti Kuppa
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Jessica Jackson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Elena Shashkova
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Urvashi Mahajan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Edwin Antony
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
11
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
12
|
PROTACs to address the challenges facing small molecule inhibitors. Eur J Med Chem 2020; 210:112993. [PMID: 33189436 DOI: 10.1016/j.ejmech.2020.112993] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Small molecule inhibitors of proteins represent important medicines and critical chemical tools to investigate the biology of the target proteins. Advances in various -omics technologies have fueled the pace of discovery of disease-relevant proteins. Translating these discoveries into human benefits requires us to develop specific chemicals to inhibit the proteins. However, traditional small molecule inhibitors binding to orthosteric or allosteric sites face significant challenges. These challenges include drug selectivity, therapy resistance as well as drugging undruggable proteins and multi-domain proteins. To address these challenges, PROteolysis TArgeting Chimera (PROTAC) has been proposed. PROTACs are heterobifunctional molecules containing a binding ligand for a protein of interest and E3 ligase-recruiting ligand that are connected through a chemical linker. Binding of a PROTAC to its target protein will bring a E3 ligase in close proximity to initiate polyubiquitination of the target protein ensuing its proteasome-mediated degradation. Unlike small molecule inhibitors, PROTACs achieve target protein degradation in its entirety in a catalytical fashion. In this review, we analyze recent advances in PROTAC design to discuss how PROTACs can address the challenges facing small molecule inhibitors to potentially deliver next-generation medicines and chemical tools with high selectivity and efficacy. We also offer our perspectives on the future promise and potential limitations facing PROTACs. Investigations to overcome these limitations of PROTACs will further help realize the promise of PROTACs for human benefits.
Collapse
|
13
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Genomic instability and innate immune responses to self-DNA in progeria. GeroScience 2019; 41:255-266. [PMID: 31280482 DOI: 10.1007/s11357-019-00082-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
In the last decade, we have seen increasing evidence of the importance of structural nuclear proteins such as lamins in nuclear architecture and compartmentalization of genome function and in the maintenance of mechanical stability and genome integrity. With over 400 mutations identified in the LMNA gene (encoding for A-type lamins) associated with more than ten distinct degenerative disorders, the role of lamins as genome caretakers and the contribution of lamins dysfunction to disease are unarguable. However, the molecular mechanisms whereby lamins mutations cause pathologies remain less understood. Here, we review pathways and mechanisms recently identified as playing a role in the pathophysiology of laminopathies, with special emphasis in Hutchinson Gilford Progeria Syndrome (HGPS). This devastating incurable accelerated aging disease is caused by a silent mutation in the LMNA gene that generates a truncated lamin A protein "progerin" that exerts profound cellular toxicity and organismal decline. Patients usually die in their teens due to cardiovascular complications such as myocardial infarction or stroke. To date, there are no efficient therapies that ameliorate disease progression, stressing the need to understand molecularly disease mechanisms that can be targeted therapeutically. We will summarize data supporting that replication stress is a major cause of genomic instability in laminopathies, which contributes to the activation of innate immune responses to self-DNA that in turn accelerate the aging process.
Collapse
|
15
|
Xiao X, Li BX. Identification of lamins as the molecular targets of LBL1 using a clickable photoaffinity probe. Methods Enzymol 2019; 633:185-201. [PMID: 32046845 DOI: 10.1016/bs.mie.2019.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phenotypic screening is a powerful approach to discover small molecules targeting pathways or disease biology with complex genetic causes. Following the initial discovery of these small molecules is their target identification, which is at the cornerstone in addressing their biological and clinical utility. Yet, finding the needle in the haystack remains a challenge. Nuclear lamins are type V intermediate filament proteins that form a filamentous structure underneath the inner nuclear envelope to support the mechanical stability of the mammalian cell nucleus. They also participate a myriad of other cellular signaling processes with incompletely understood molecular mechanisms. Small molecules that can directly bind to nuclear lamins will be incredible tools to address lamins' roles in different aspects of biology. However, these small molecules did not exist until recently. We previously discovered an acylpyrroloquinazoline called LBL1 that selectively killed breast cancer cells without harming normal human cells. To help understand the mechanism of action of LBL1, we recently took an unbiased chemical proteomics approach to identify its direct binding targets from the entire human cellular proteome. In this chapter, we describe our detailed methods to identify and validate lamins as the direct targets of LBL1. In this approach, we developed a clickable photoaffinity probe called LBL1-P that contains acylpyrroloquinazoline, trifluoromethyldiazirine and alkyne groups. Furthermore, we described a fluorescence microscopic method to validate that LBL1 directly targets lamin A in living cells. When properly designed, this approach should be broadly applicable to other bioactive small molecules.
Collapse
Affiliation(s)
- Xiangshu Xiao
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Bingbing X Li
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|