1
|
Kwok JG, Yuan Z, Arora PS. An Encodable Scaffold for Sequence-Specific Recognition of Duplex RNA. Angew Chem Int Ed Engl 2023; 62:e202308650. [PMID: 37548640 PMCID: PMC10528708 DOI: 10.1002/anie.202308650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
RNA, unlike DNA, folds into a multitude of secondary and tertiary structures. This structural diversity has impeded the development of ligands that can sequence-specifically target this biomolecule. We sought to develop ligands for double-stranded RNA (dsRNA) segments, which are ubiquitous in RNA tertiary structure. The major groove of double-stranded DNA is sequence-specifically recognized by a range of dimeric helical transcription factors, including the basic leucine zippers (bZIP) and basic helix-loop-helix (bHLH) proteins; however, such simple structural motifs are not prevalent in RNA-binding proteins. We interrogated the high-resolution structures of DNA and RNA to identify requirements for a helix fork motif to occupy dsRNA major grooves akin to dsDNA. Our analysis suggested that the rigidity and angle of approach of dimeric helices in bZIP/bHLH motifs are not ideal for the binding of dsRNA major grooves. This investigation revealed that the replacement of the leucine zipper motifs in bHLH proteins with synthetic crosslinkers would allow recognition of dsRNA. We show that a model bHLH DNA-binding motif does not bind dsRNA but can be reengineered as an RNA ligand. Based on this hypothesis, we rationally designed a miniature synthetic crosslinked helix fork (CHF) as a generalizable proteomimetic scaffold for targeting dsRNA. We evaluated several CHF constructs against a set of RNA and DNA hairpins to probe the specificity of the designed construct. Our studies reveal a new class of proteomimetics as an encodable platform for sequence-specific recognition of dsRNA.
Collapse
Affiliation(s)
- Jonathan G. Kwok
- Department of Chemistry, New York University, 29 Washington Place, New York, NY10003
| | - Zhi Yuan
- Department of Chemistry, New York University, 29 Washington Place, New York, NY10003
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 29 Washington Place, New York, NY10003
| |
Collapse
|
2
|
Zhang L, Xie X, Djokovic N, Nikolic K, Kosenkov D, Abendroth F, Vázquez O. Reversible Control of RNA Splicing by Photoswitchable Small Molecules. J Am Chem Soc 2023. [PMID: 37276581 DOI: 10.1021/jacs.3c03275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dynamics are intrinsic to both RNA function and structure. Yet, the available means to precisely provide RNA-based processes with spatiotemporal resolution are scarce. Here, our work pioneers a reversible approach to regulate RNA splicing within primary patient-derived cells by synthetic photoswitches. Our small molecule enables conditional real-time control at mRNA and protein levels. NMR experiments, together with theoretical calculations, photochemical characterization, fluorescence polarization measurements, and living cell-based assays, confirmed light-dependent exon inclusion as well as an increase in the target functional protein. Therefore, we first demonstrated the potential of photopharmacology modulation in splicing, tweaking the current optochemical toolkit. The timeliness on the consolidation of RNA research as the driving force toward therapeutical innovation holds the promise that our approach will contribute to redrawing the vision of RNA.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Xiulan Xie
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Dmitri Kosenkov
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey 07764, United States
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg, D-35043, Germany
| |
Collapse
|
3
|
Corcos L, Le Scanf E, Quéré G, Arzur D, Cueff G, Jossic-Corcos CL, Le Maréchal C. Microsatellite Instability and Aberrant Pre-mRNA Splicing: How Intimate Is It? Genes (Basel) 2023; 14:genes14020311. [PMID: 36833239 PMCID: PMC9957390 DOI: 10.3390/genes14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Cancers that belong to the microsatellite instability (MSI) class can account for up to 15% of all cancers of the digestive tract. These cancers are characterized by inactivation, through the mutation or epigenetic silencing of one or several genes from the DNA MisMatch Repair (MMR) machinery, including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2 and Exo1. The unrepaired DNA replication errors turn into mutations at several thousand sites that contain repetitive sequences, mainly mono- or dinucleotides, and some of them are related to Lynch syndrome, a predisposition condition linked to a germline mutation in one of these genes. In addition, some mutations shortening the microsatellite (MS) stretch could occur in the 3'-intronic regions, i.e., in the ATM (ATM serine/threonine kinase), MRE11 (MRE11 homolog) or the HSP110 (Heat shock protein family H) genes. In these three cases, aberrant pre-mRNA splicing was observed, and it was characterized by the occurrence of selective exon skipping in mature mRNAs. Because both the ATM and MRE11 genes, which as act as players in the MNR (MRE11/NBS1 (Nibrin)/RAD50 (RAD50 double strand break repair protein) DNA damage repair system, participate in double strand breaks (DSB) repair, their frequent splicing alterations in MSI cancers lead to impaired activity. This reveals the existence of a functional link between the MMR/DSB repair systems and the pre-mRNA splicing machinery, the diverted function of which is the consequence of mutations in the MS sequences.
Collapse
Affiliation(s)
- Laurent Corcos
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
- Correspondence:
| | | | - Gaël Quéré
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
| | | | | | | | - Cédric Le Maréchal
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
| |
Collapse
|
4
|
Rozza R, Janoš P, Spinello A, Magistrato A. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opin Drug Discov 2022; 17:1095-1109. [PMID: 35983696 DOI: 10.1080/17460441.2022.2114452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| |
Collapse
|
5
|
Byun WG, Lim D, Park SB. Small-molecule modulators of protein–RNA interactions. Curr Opin Chem Biol 2022; 68:102149. [DOI: 10.1016/j.cbpa.2022.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
|
6
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
7
|
Zhang R, Gao X, Chen L, Nan F. Discovery and Structure-Activity Relationship Studies of Thiazole- Oxazole Tandem Heterocyclic RNA Splicing Inhibitors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
McIntosh CS, Watts GF, Wilton SD, Aung-Htut MT. Splice correction therapies for familial hypercholesterolemic patients with low-density lipoprotein receptor mutations. Curr Opin Lipidol 2021; 32:355-362. [PMID: 34653074 PMCID: PMC8631153 DOI: 10.1097/mol.0000000000000793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Antisense oligomers (ASOs) have been available for decades: however, only recently have these molecules been applied clinically. This review aims to discuss the possible development of antisense-mediated splice correction therapies as precision medicines for familial hypercholesterolemic patients carrying mutations that compromise normal splicing of the low-density lipoprotein receptor (LDLR) gene transcript. RECENT FINDINGS Three antisense drugs are currently being assessed in ongoing clinical trials for dyslipidemias, aiming to lower the plasma concentrations of lipoproteins that lead to end-organ damage, principally coronary artery disease. Although a handful of drugs may be applicable to many patients with familial hypercholesterolemia (FH), mutation-specific personalised antisense drugs may be even more effective in selected patients. Currently, there is no therapy that effectively addresses mutations in the LDLR, the major cause of FH. Many mutations in the LDLR that disrupt normal pre-mRNA processing could be applicable to splice correction therapy to restore receptor activity. SUMMARY Precision medicine could provide long-term economic and social benefits if they can be implemented effectively and sustainably. Many mutations found in the LDLR gene could be amendable to therapeutic splice correction and we should consider developing a therapeutic ASO platform for these mutations.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Gerald F. Watts
- School of Medicine, University of Western Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - May T. Aung-Htut
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
9
|
Sabnis RW. Novel Heteroaryl Compounds as Splicing Modulators for Modulating Splicing of mRNA and Uses Thereof for Treating Diseases. ACS Med Chem Lett 2021; 12:872-873. [PMID: 34141063 PMCID: PMC8201491 DOI: 10.1021/acsmedchemlett.1c00249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite
3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
10
|
Sabnis RW. Novel Substituted Pyridazines as Splicing Modulators for Modulating Splicing of mRNA and Uses Thereof for Treating Diseases. ACS Med Chem Lett 2021; 12:866-867. [PMID: 34141060 PMCID: PMC8201510 DOI: 10.1021/acsmedchemlett.1c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
11
|
Sabnis RW. Novel Substituted Pyrazines as Splicing Modulators for Modulating Splicing of mRNA and Uses Thereof for Treating Diseases. ACS Med Chem Lett 2021; 12:870-871. [PMID: 34141062 PMCID: PMC8201488 DOI: 10.1021/acsmedchemlett.1c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
12
|
Sabnis RW. Novel Substituted Triazines as Splicing Modulators for Modulating Splicing of mRNA and Uses Thereof for Treating Diseases. ACS Med Chem Lett 2021; 12:860-861. [PMID: 34141057 PMCID: PMC8201476 DOI: 10.1021/acsmedchemlett.1c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite
3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
13
|
Sabnis RW. Novel Substituted Thiadiazoles as Splicing Modulators for Modulating Splicing of mRNA and Uses Thereof for Treating Diseases. ACS Med Chem Lett 2021; 12:864-865. [PMID: 34141059 PMCID: PMC8201505 DOI: 10.1021/acsmedchemlett.1c00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite
3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
14
|
Sabnis RW. Novel Substituted Pyridazines as Splicing Modulators for Modulating Splicing of mRNA and Uses Thereof for Treating Diseases. ACS Med Chem Lett 2021; 12:862-863. [PMID: 34141058 PMCID: PMC8201490 DOI: 10.1021/acsmedchemlett.1c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite
3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
15
|
|
16
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|