1
|
Tsukidate T, Sahoo A, Pendyala G, Yang RS, Welch J, Madabhushi S, Li X. Discovery of Chemical Tools for Polysorbate-Degradative Enzyme Control in the Biopharmaceutical Upstream Process via Multi-Omic Profiling of Host Cell Clones. ACS Chem Biol 2025. [PMID: 40249937 DOI: 10.1021/acschembio.5c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Host cell proteins are process-related impurities in biotherapeutics and can potentially pose risks to patient safety and product quality. Specifically, certain host cell-derived enzymes, including lipases, can degrade the formulation excipient polysorbate (PS) in biopharmaceutical formulations, affecting drug product stability in liquid formulations. We leveraged multiomics approaches, including transcriptomics, proteomics, and activity-based protein profiling (ABPP), to identify mechanisms that regulate PS-degradative enzyme (PSDE) abundance and to develop strategies for their control. Comparative multiomics analysis of two monoclonal antibody (mAb)-producing host cell clones revealed differential lipase profiles at the mRNA, protein, and enzyme activity levels and associated increased lipase activity with upregulated lipid catabolic pathways such as the fatty acid beta oxidation pathway. Further, for the first time in the literature, we identified peroxisome proliferator-activated receptor γ (PPARγ) as a key regulator of PSDEs in manufacturing Chinese Hamster Ovary (CHO) cells. Downregulation of the PPARγ pathway with its antagonists resulted in a selective reduction of PSDE levels and improved PS stability without compromising mAb productivity or quality. This study highlights the potential of PPARγ modulators as chemical tools for PSDE control at the gene regulation level, offering significant implications for biopharmaceutical process development and control.
Collapse
Affiliation(s)
- Taku Tsukidate
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ansuman Sahoo
- Biologics Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Geetanjali Pendyala
- Biologics Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rong-Sheng Yang
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jonathan Welch
- Biologics Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Sri Madabhushi
- Biologics Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xuanwen Li
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Rajan S, Yoon HS. Covalent ligands of nuclear receptors. Eur J Med Chem 2023; 261:115869. [PMID: 37857142 DOI: 10.1016/j.ejmech.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nuclear receptors (NRs) are ligand-induced transcriptional factors implicated in several physiological pathways. Naïve ligands bind to their cognate receptors and modulate gene expression as agonists or antagonists. It has been observed that some ligands bind via covalent bonding with the NR Ligand Binding Domain (LBD) residues. While many such instances have been known since the 1980s, a consolidated account of these ligands and their interactions with NR-LBD is yet to be documented. To negate this, we have culled out the human NR-LBDs that form a covalent attachment with ligands. According to the study, 16 of the 48 human NRs have been targeted by covalent ligands. It was found that conserved cysteines prone to covalent attachment are predominantly located in NR-LBD helices 3 and 11. These conserved cysteines are also observed in many of the remaining NRs, which can be probed for their reactivity. Thus, the structural insights into NR-LBD interactions with covalent ligands presented here would aid drug discovery efforts targeting NRs.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea; CHA Advanced Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
3
|
Mandal S, Faizan S, Raghavendra NM, Kumar BRP. Molecular dynamics articulated multilevel virtual screening protocol to discover novel dual PPAR α/γ agonists for anti-diabetic and metabolic applications. Mol Divers 2023; 27:2605-2631. [PMID: 36437421 DOI: 10.1007/s11030-022-10571-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
PPARα and PPARγ are isoforms of the nuclear receptor superfamily which regulate glucose and lipid metabolism. Activation of PPARα and PPARγ receptors by exogenous ligands could transactivate the expression of PPARα and PPARγ-dependent genes, and thereby, metabolic pathways get triggered, which are helpful to ameliorate treatment for the type 2 diabetes mellitus, and related metabolic complications. Herein, by understanding the structural requirements for ligands to activate PPARα and PPARγ proteins, we developed a multilevel in silico-based virtual screening protocol to identify novel chemical scaffolds and further design and synthesize two distinct series of glitazone derivatives with advantages over the classical PPARα and PPARγ agonists. Moreover, the synthesized compounds were biologically evaluated for PPARα and PPARγ transactivation potency from nuclear extracts of 3T3-L1 cell. Furthermore, glucose uptake assay on L6 cells confirmed the potency of the synthesized compounds toward glucose regulation. Percentage lipid-lowering potency was also assessed through triglyceride estimate from 3T3-L1 cell extracts. Results suggested the ligand binding mode was in orthosteric fashion as similar to classical agonists. Thus molecular docking and molecular dynamics (MD) simulation experiments were executed to validate our hypothesis on mode of ligands binding and protein complex stability. Altogether, the present study developed a newer protocol for virtual screening and enables to design of novel glitazones for activation of PPARα and PPARγ-mediated pathways. Accordingly, present approach will offer benefit as a therapeutic strategy against type 2 diabetes mellitus and associated metabolic complications.
Collapse
Affiliation(s)
- Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | | | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India.
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
4
|
Dvořák Z, Li H, Mani S. Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metab Dispos 2023; 51:219-227. [PMID: 36184080 PMCID: PMC9900867 DOI: 10.1124/dmd.122.000860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023] Open
Abstract
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Li
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Xiao Z, Chen D, Mulder F, Song S, van der Wouden PE, Cool RH, Melgert BN, Poelarends GJ, Dekker FJ. 4-Iodopyrimidine Labeling Reveals Nuclear Translocation and Nuclease Activity for Both MIF and MIF2*. Chemistry 2021; 28:e202103030. [PMID: 34724273 PMCID: PMC9299485 DOI: 10.1002/chem.202103030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/18/2022]
Abstract
Macrophage migration inhibitory factor (MIF) and its homolog MIF2 (also known as D‐dopachrome tautomerase or DDT) play key roles in cell growth and immune responses. MIF and MIF2 expression is dysregulated in cancers and neurodegenerative diseases. Accurate and convenient detection of MIF and MIF2 will facilitate research on their roles in cancer and other diseases. Herein, we report the development and application of a 4‐iodopyrimidine based probe 8 for the selective labeling of MIF and MIF2. Probe 8 incorporates a fluorophore that allows in situ imaging of these two proteins. This enabled visualization of the translocation of MIF2 from the cytoplasm to the nucleus upon methylnitronitrosoguanidine stimulation of HeLa cells. This observation, combined with literature on nuclease activity for MIF, enabled the identification of nuclease activity for MIF2 on human genomic DNA.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fabian Mulder
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Shanshan Song
- Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Petra E van der Wouden
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Robbert H Cool
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Barbro N Melgert
- Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,University Medical Center Groningen, Groningen Research Institute of Asthma and COPD, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
6
|
Miyamae Y. Insights into Dynamic Mechanism of Ligand Binding to Peroxisome Proliferator-Activated Receptor γ toward Potential Pharmacological Applications. Biol Pharm Bull 2021; 44:1185-1195. [PMID: 34471046 DOI: 10.1248/bpb.b21-00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily, which regulates the transcription of a variety of genes involved in lipid and glucose metabolism, inflammation, and cell proliferation. These functions correlate with the onset of type-2 diabetes, obesity, and immune disorders, which makes PPARγ a promising target for drug development. The majority of PPARγ functions are regulated by binding of small molecule ligands, which cause conformational changes of PPARγ followed by coregulator recruitment. The ligand-binding domain (LBD) of PPARγ contains a large Y-shaped cavity that can be occupied by various classes of compounds such as full agonists, partial agonists, natural lipids, and in some cases, a combination of multiple molecules. Several crystal structure studies have revealed the binding modes of these compounds in the LBD and insight into the resulting conformational changes. Notably, the apo form of the PPARγ LBD contains a highly mobile region that can be stabilized by ligand binding. Furthermore, recent biophysical investigations have shed light on the dynamic mechanism of how ligands induce conformational changes in PPARγ and result in functional output. This information may be useful for the design of new and repurposed structures of ligands that serve a different function from original compounds and more potent pharmacological effects with less undesirable clinical outcomes. This review provides an overview of the peculiar characteristics of the PPARγ LBD by examining a series of structural studies focused on the dynamic mechanism of binding and the potential applications of strategies for ligand screening and chemical labeling.
Collapse
Affiliation(s)
- Yusaku Miyamae
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Alliance for Research on the Mediterranean and North Africa, University of Tsukuba
| |
Collapse
|