1
|
Edaibis R, Akel R, Shin JA. Beyond small molecules: advancing MYC-targeted cancer therapies through protein engineering. Transcription 2025; 16:67-85. [PMID: 39878458 PMCID: PMC11970745 DOI: 10.1080/21541264.2025.2453315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance. Recent advances in protein engineering offer promising alternatives by creating protein-based drugs that directly disrupt the MYC/MAX dimerization interface and/or MYC/MAX's binding to specific DNA targets. Designed DNA binding proteins like Omomyc, DuoMyc, ME47, MEF, and Mad inhibit MYC activity through specific dimerization, sequestration, and DNA-binding mechanisms. Compared to small molecules, these engineered proteins can offer superior specificity and efficacy and provide a potential pathway for overcoming the limitations of traditional cancer therapies. The success of these protein therapeutics highlights the importance of protein engineering in developing cancer treatments.
Collapse
Affiliation(s)
- Rama Edaibis
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Raneem Akel
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
2
|
Chen W, Wu M, Du L, Fang C, Wang H, Wang W, Zhang C, Guo H, Zhang G. Upregulation of GSTP1 mediated by chimeric TFE3 promotes TFE3-tRCC progression by targeting JNK signaling pathway. World J Surg Oncol 2024; 22:352. [PMID: 39736746 DOI: 10.1186/s12957-024-03633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND TFE3-translocation renal cell carcinoma (TFE3-tRCC), a distinct subtype of kidney cancer characterized by Xp11.2 translocations, involving TFE3 fusion with various partner genes, lacks effective treatments and prognostic biomarkers for advanced stages. This study aimed to unravel the pathogenic mechanisms and uncover novel therapeutic targets. METHODS The transcriptional characterization of TFE3-tRCC was conducted by RNA sequencing on 14 untreated primary TFE3-tRCC patients. The relative mRNA and protein levels were detected using qRT-PCR and Western blot, respectively. The location of ASPL-TFE3 fusion protein was analyzed by immunofluorescence. MTT and colony formation assays were used to detect cell proliferation. Annexin V/PI staining was used to evaluate cell apoptosis. Transwell assays were used to evaluate in vitro cell migration and invasion. RESULTS In TFE3-tRCC patients, GSTP1 expression was upregulated. ASPL-TFE3 cell models revealed that the ASPL-TFE3 fusion protein translocates to the nucleus, contributing to tumorigenesis. Notably, GSTP1 was transcriptionally activated by chimeric TFE3. Treatment with GSTP1-targeting siRNA or the GSTP1 inhibitor Ezatiostat effectively inhibited tumor growth and induced apoptosis in TFE3-tRCC cells. Furthermore, GSTP1 was found to drive TFE3-tRCC progression via modulation of the JNK signaling pathway. CONCLUSION Upregulation of GSTP1 mediated by chimeric TFE3 promotes TFE3-tRCC progression by targeting JNK signaling pathway, which underscore the potential of GSTP1 as a promising therapeutic target for TFE3-tRCC.
Collapse
MESH Headings
- Humans
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Cell Proliferation
- Apoptosis
- Mice
- Male
- Glutathione S-Transferase pi/genetics
- Glutathione S-Transferase pi/metabolism
- Up-Regulation
- Prognosis
- Gene Expression Regulation, Neoplastic
- MAP Kinase Signaling System
- Animals
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Translocation, Genetic
- Female
- Cell Movement
- Tumor Cells, Cultured
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Xenograft Model Antitumor Assays
- Mice, Nude
- Disease Progression
Collapse
Affiliation(s)
- Weixu Chen
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210008, China
| | - Mengtong Wu
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210008, China
| | - Lin Du
- Department of Urology, The First People's Hospital of Yancheng, Jiangsu, Yancheng, 224006, China
| | - Changhua Fang
- Department of Urology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210002, China
| | - Hao Wang
- Department of Urology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210002, China
| | - Wendi Wang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Southeast University, Jiangsu, Nanjing, 210008, China
| | - Chengwei Zhang
- Department of Urology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Jiangsu, 210008, China.
| | - Hongqian Guo
- Department of Urology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Jiangsu, 210008, China.
| | - Gutian Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210008, China.
| |
Collapse
|
3
|
Abstract
After cardiovascular disease, cancer is our biggest killer. The "war on cancer" officially launched in 1971; despite decades of research and development, our arsenal of drugs against cancer still comprises mainly small molecules. Protein drugs, however, are poised to become the foundation for next-generation drugs that target MYC, a proto-oncogene that encodes the MYC transcription factor involved in the majority of human cancers. Such protein drugs work inside the cell in the nucleus, where they interact directly with the genome or can partner with MYC to blunt its detrimental activities. No small-molecule drug has been successful against MYC, but protein drug Omomyc has successfully inhibited solid tumors in human trials. Although MYC is a key regulator of normal cellular processes, we need to develop new tactics to contain MYC when it goes rogue.
Collapse
Affiliation(s)
- Jumi A Shin
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada.
| |
Collapse
|
4
|
Zhang J, Lin L, Wei W, Wei D. Identification, Characterization, and Computer-Aided Rational Design of a Novel Thermophilic Esterase from Geobacillus subterraneus, and Application in the Synthesis of Cinnamyl Acetate. Appl Biochem Biotechnol 2024; 196:3553-3575. [PMID: 37713064 DOI: 10.1007/s12010-023-04697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Investigation of a novel thermophilic esterase gene from Geobacillus subterraneus DSMZ 13552 indicated a high amino acid sequence similarity of 25.9% to a reported esterase from Geobacillus sp. A strategy that integrated computer-aided rational design tools was developed to select mutation sites. Six mutants were selected from four criteria based on the simulated saturation mutation (including 19 amino acid residues) results. Of these, the mutants Q78Y and G119A were found to retain 87% and 27% activity after incubation at 70 °C for 20 min, compared with the 19% activity for the wild type. Subsequently, a double-point mutant (Q78Y/G119A) was obtained and identified with optimal temperature increase from 65 to 70 °C and a 41.51% decrease in Km. The obtained T1/2 values of 42.2 min (70 °C) and 16.9 min (75 °C) for Q78Y/G119A showed increases of 340% and 412% compared with that in the wild type. Q78Y/G119A was then employed as a biocatalyst to synthesize cinnamyl acetate, for which the conversion rate reached 99.40% with 0.3 M cinnamyl alcohol at 60 °C. The results validated the enhanced enzymatic properties of the mutant and indicated better prospects for industrial application as compared to that in the wild type. This study reported a method by which an enzyme could evolve to achieve enhanced thermostability, thereby increasing its potential for industrial applications, which could also be expanded to other esterases.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
5
|
Ellenbroek BD, Kahler JP, Evers SR, Pomplun SJ. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202401704. [PMID: 38456368 DOI: 10.1002/anie.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.
Collapse
Affiliation(s)
| | | | - Sophie R Evers
- Leiden University, 2333 CC, Leiden, The Netherlands
- Present address, Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
6
|
Ali M, Akel R, Botero MJ, Shin JA. Combining a Base Deaminase Mutator with Phage-Assisted Evolution. Methods Mol Biol 2024; 2793:55-64. [PMID: 38526723 DOI: 10.1007/978-1-0716-3798-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Phage-assisted evolution has emerged as a powerful technique for improving a protein's function by using mutagenesis and selective pressure. However, mutations typically occur throughout the host's genome and are not limited to the gene-of-interest (GOI): these undesirable genomic mutations can yield host cells that circumvent the system's selective pressure. Our system targets mutations specifically toward the GOI by combining T7 targeted mutagenesis and phage-assisted evolution. This system improves the structure and function of proteins by accumulating favorable mutations that can change its binding affinity, specificity, and activity.
Collapse
Affiliation(s)
- Maryam Ali
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Raneem Akel
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Maria J Botero
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Jumi A Shin
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada.
| |
Collapse
|
7
|
Xie VC, Styles MJ, Dickinson BC. Methods for the directed evolution of biomolecular interactions. Trends Biochem Sci 2022; 47:403-416. [PMID: 35427479 PMCID: PMC9022280 DOI: 10.1016/j.tibs.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Noncovalent interactions between biomolecules such as proteins and nucleic acids coordinate all cellular processes through changes in proximity. Tools that perturb these interactions are and will continue to be highly valuable for basic and translational scientific endeavors. By taking cues from natural systems, such as the adaptive immune system, we can design directed evolution platforms that can generate proteins that bind to biomolecules of interest. In recent years, the platforms used to direct the evolution of biomolecular binders have greatly expanded the range of types of interactions one can evolve. Herein, we review recent advances in methods to evolve protein-protein, protein-RNA, and protein-DNA interactions.
Collapse
Affiliation(s)
| | - Matthew J Styles
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Chan A, Wang HH, Haley RM, Song C, Gonzalez-Martinez D, Bugaj L, Mitchell MJ, Tsourkas A. Cytosolic Delivery of Small Protein Scaffolds Enables Efficient Inhibition of Ras and Myc. Mol Pharm 2022; 19:1104-1116. [PMID: 35225618 PMCID: PMC8983512 DOI: 10.1021/acs.molpharmaceut.1c00798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to deliver small protein scaffolds intracellularly could enable the targeting and inhibition of many therapeutic targets that are not currently amenable to inhibition with small-molecule drugs. Here, we report the engineering of small protein scaffolds with anionic polypeptides (ApPs) to promote electrostatic interactions with positively charged nonviral lipid-based delivery systems. Proteins fused with ApPs are either complexed with off-the-shelf cationic lipids or encapsulated within ionizable lipid nanoparticles for highly efficient cytosolic delivery (up to 90%). The delivery of protein inhibitors is used to inhibit two common proto-oncogenes, Ras and Myc, in two cancer cell lines. This report demonstrates the feasibility of combining minimally engineered small protein scaffolds with tractable nanocarriers to inhibit intracellular proteins that are generally considered "undruggable" with current small molecule drugs and biologics.
Collapse
Affiliation(s)
- Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hejia Henry Wang
- Department Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rebecca M. Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cindy Song
- Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - David Gonzalez-Martinez
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lukasz Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Korn SM, Schlundt A. Structures and nucleic acid-binding preferences of the eukaryotic ARID domain. Biol Chem 2022; 403:731-747. [PMID: 35119801 DOI: 10.1515/hsz-2021-0404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
The DNA-binding AT-rich interactive domain (ARID) exists in a wide range of proteins throughout eukaryotic kingdoms. ARID domain-containing proteins are involved in manifold biological processes, such as transcriptional regulation, cell cycle control and chromatin remodeling. Their individual domain composition allows for a sub-classification within higher mammals. ARID is categorized as binder of double-stranded AT-rich DNA, while recent work has suggested ARIDs as capable of binding other DNA motifs and also recognizing RNA. Despite a broad variability on the primary sequence level, ARIDs show a highly conserved fold, which consists of six α-helices and two loop regions. Interestingly, this minimal core domain is often found extended by helices at the N- and/or C-terminus with potential roles in target specificity and, subsequently function. While high-resolution structural information from various types of ARIDs has accumulated over two decades now, there is limited access to ARID-DNA complex structures. We thus find ourselves left at the beginning of understanding ARID domain target specificities and the role of accompanying domains. Here, we systematically summarize ARID domain conservation and compare the various types with a focus on their structural differences and DNA-binding preferences, including the context of multiple other motifs within ARID domain containing proteins.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
10
|
Trivedi VD, Mohan K, Chappell TC, Mays ZJS, Nair NU. Cheating the Cheater: Suppressing False-Positive Enrichment during Biosensor-Guided Biocatalyst Engineering. ACS Synth Biol 2022; 11:420-429. [PMID: 34914365 DOI: 10.1021/acssynbio.1c00506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transcription factor (TF)-based biosensors are very desirable reagents for high-throughput enzyme and strain engineering campaigns. Despite their potential, they are often difficult to deploy effectively as the small molecules being detected can leak out of high-producer cells, into low-producer cells, and activate the biosensor therein. This crosstalk leads to the overrepresentation of false-positive/cheater cells in the enriched population. While the host cell can be engineered to minimize crosstalk (e.g., by deleting responsible transporters), this is not easily applicable to all molecules of interest, particularly those that can diffuse passively. One such biosensor recently reported for trans-cinnamic acid (tCA) suffers from crosstalk when used for phenylalanine ammonia-lyase (PAL) enzyme engineering by directed evolution. We report that desensitizing the biosensor (i.e., increasing the limit of detection) suppresses cheater population enrichment. Furthermore, we show that, if we couple the biosensor-based screen with an orthogonal prescreen that eliminates a large fraction of true negatives, we can successfully reduce the cheater population during the fluorescence-activated cell sorting. Using the approach developed here, we were successfully able to isolate PAL variants with ∼70% higher kcat after a single sort. These mutants have tremendous potential in phenylketonuria (PKU) treatment and flavonoid production.
Collapse
Affiliation(s)
- Vikas D. Trivedi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Karishma Mohan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Todd C. Chappell
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Zachary J. S. Mays
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nikhil U. Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Ferrando J, Solomon LA. Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions. Life (Basel) 2021; 11:life11030225. [PMID: 33802210 PMCID: PMC7999464 DOI: 10.3390/life11030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
De novo protein design is a powerful methodology used to study natural functions in an artificial-protein context. Since its inception, it has been used to reproduce a plethora of reactions and uncover biophysical principles that are often difficult to extract from direct studies of natural proteins. Natural proteins are capable of assuming a variety of different structures and subsequently binding ligands at impressively high levels of both specificity and affinity. Here, we will review recent examples of de novo design studies on binding reactions for small molecules, nucleic acids, and the formation of protein-protein interactions. We will then discuss some new structural advances in the field. Finally, we will discuss some advancements in computational modeling and design approaches and provide an overview of some modern algorithmic tools being used to design these proteins.
Collapse
Affiliation(s)
- Juan Ferrando
- Department of Biology, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Lee A. Solomon
- Department of Chemistry and Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Correspondence: ; Tel.: +703-993-6418
| |
Collapse
|