1
|
Blizard GS, Dwivedi G, Pan YG, Hou C, Etersque JM, Said H, Chevrier A, Lavertu M, Ni H, Davis B, Tam Y, Cao Q, Mach RH, Weissman D, Alameh MG, Sellmyer MA. Monitoring mRNA vaccine antigen expression in vivo using PET/CT. Nat Commun 2025; 16:2234. [PMID: 40044669 PMCID: PMC11882883 DOI: 10.1038/s41467-025-57446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Noninvasive visualization of the distribution and persistence of mRNA vaccine antigen expression in mammalian systems has implications for the development and evaluation of future mRNA vaccines. Here, we genetically fuse E. coli dihydrofolate reductase (eDHFR) to the delta furin diproline modified SARS-CoV-2 spike glycoprotein (S2P∆f) mRNA vaccine and image its expression in female mice and male non-human primates using [18F]fluoropropyl-trimethoprim ([18F]FP-TMP). Whole body positron emission tomography (PET) imaging revealed transient expression of the vaccine antigen in the injection site and draining lymph nodes (dLNs). Fusion of eDHFR did not impact S2P immunogenicity and no humoral or cellular immune response was detected against eDHFR in either species. In this work, we show that eDHFR can be used as an mRNA-encoded PET reporter gene to monitor the spatiotemporal dynamics of mRNA vaccine antigen expression in vivo. This technique could be applied in clinical translation of future mRNA vaccines or therapeutics.
Collapse
Affiliation(s)
- Gabrielle S Blizard
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garima Dwivedi
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Gen Pan
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Hou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M Etersque
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hooda Said
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anik Chevrier
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC, Canada
| | - Marc Lavertu
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC, Canada
| | - Houping Ni
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Davis
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Quy Cao
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Love AC, Tran SH, Prescher JA. Caged Cumate Enables Proximity-Dependent Control Over Gene Expression. Chembiochem 2021; 22:2440-2448. [PMID: 34031982 PMCID: PMC9870035 DOI: 10.1002/cbic.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Indexed: 01/26/2023]
Abstract
Cell-cell interactions underlie diverse physiological processes yet remain challenging to examine with conventional imaging tools. Here we report a novel strategy to illuminate cell proximity using transcriptional activators. We repurposed cumate, a small molecule inducer of gene expression, by caging its key carboxylate group with a nitrile. Nitrilase-expressing activator cells released the cage, liberating cumate for consumption by reporter cells. Reporter cells comprising a cumate-responsive switch expressed a target gene when in close proximity to the activator cells. Overall, this strategy provides a versatile platform to image and potentially manipulate cellular interactions over time.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
| | - Sabrina H Tran
- Department of Biological Sciences, University of California, Irvine, 5120 Natural Sciences II, Irvine, CA, 92627, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Ste. 101, Irvine, CA 92697, USA
| |
Collapse
|