1
|
Labra B, Parag-Sharma K, Powers JJ, Srivastava S, Walker JR, Kirkland TA, Brennan CK, Prescher JA, Amelio AL. Optimized in vivo multispectral bioluminescent imaging of tumor biology using engineered BRET reporters. iScience 2024; 27:110655. [PMID: 39252965 PMCID: PMC11381837 DOI: 10.1016/j.isci.2024.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
The ability to visualize and track multiple biological processes in vivo in real time is highly desirable. Bioluminescence imaging (BLI) has emerged as an attractive modality for non-invasive cell tracking, with various luciferase reporters enabling parallel monitoring of several processes. However, simultaneous multiplexed imaging in vivo is challenging due to suboptimal reporter intensities and the need to image one luciferase at a time. We report a multiplexed BLI approach using a single substrate that leverages bioluminescence resonance energy transfer (BRET)-based reporters with distinct spectral profiles for triple-color BLI. These luciferase-fluorophore fusion reporters address light transmission challenges and use optimized coelenterazine substrates. Comparing BRET reporters across two substrate analogs identified a green-yellow-orange combination that allows simultaneous imaging of three distinct cell populations in vitro and in vivo. These tools provide a template for imaging other biological processes in vivo during a single BLI session using a single reporter substrate.
Collapse
Affiliation(s)
- Bryan Labra
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology & Physiology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John J. Powers
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Thomas A. Kirkland
- Promega Biosciences, LLC, San Luis Obispo, CA, USA
- Promega Corporation, Madison, WI, USA
| | | | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Antonio L. Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Torrey ZR, Halbers LP, Scipioni L, Tedeschi G, Digman MA, Prescher JA. A versatile bioluminescent probe with tunable color. RSC Chem Biol 2024:d4cb00101j. [PMID: 39308479 PMCID: PMC11414822 DOI: 10.1039/d4cb00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bioluminescence is a powerful method for imaging in vivo, but applications at the microscale are far from routine. This is due, in part, to a lack of versatile tools for visualizing dynamic events. To address this void, we developed a new platform-Bioluminescence Resonance Energy mAKe over with a Fluorescence-Activating absorption-Shifting Tag (BREAKFAST). BREAKFAST features a bright luciferase combined with a chemogenetic tag (pFAST) for rapid color switching. In the presence of luciferin and a discrete fluorogenic ligand, signal is observed via resonance energy transfer. We evaluated spectral outputs with various fluorogens and established the utility of BREAKFAST for combined fluorescence and bioluminescence imaging. Dynamic, four-color visualization was achieved with sequential ligand addition and spectral phasor analysis. We further showed selective signal quenching with a dark fluorogen. Collectively, this work establishes a new method for bioluminescence imaging at the cellular scale and sets the stage for continued probe development.
Collapse
Affiliation(s)
- Zachary R Torrey
- Department of Chemistry, University of California Irvine Irvine CA 92697 USA
| | - Lila P Halbers
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California Irvine Irvine CA 92697 USA
| | - Giulia Tedeschi
- Department of Biomedical Engineering, University of California Irvine Irvine CA 92697 USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine Irvine CA 92697 USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California Irvine Irvine CA 92697 USA
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA
- Department of Molecular Biology & Biochemistry, University of California Irvine Irvine CA 92697 USA
| |
Collapse
|
3
|
Yun J, Huang Y, Miller ADC, Chang BL, Baldini L, Dhanabalan KM, Li E, Li H, Mukherjee A. Destabilized reporters for background-subtracted, chemically-gated, and multiplexed deep-tissue imaging. Chem Sci 2024; 15:11108-11121. [PMID: 39027298 PMCID: PMC11253201 DOI: 10.1039/d4sc00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024] Open
Abstract
Tracking gene expression in deep tissues requires genetic reporters that can be unambiguously detected using tissue penetrant techniques. Magnetic resonance imaging (MRI) is uniquely suited for this purpose; however, there is a dearth of reporters that can be reliably linked to gene expression with minimal interference from background tissue signals. Here, we present a conceptually new method for generating background-subtracted, drug-gated, multiplex images of gene expression using MRI. Specifically, we engineered chemically erasable reporters consisting of a water channel, aquaporin-1, fused to destabilizing domains, which are stabilized by binding to cell-permeable small-molecule ligands. We showed that this approach allows for highly specific detection of gene expression through differential imaging. In addition, by engineering destabilized aquaporin-1 variants with orthogonal ligand requirements, it is possible to distinguish distinct subpopulations of cells in mixed cultures. Finally, we demonstrated this approach in a mouse tumor model through differential imaging of gene expression with minimal background.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
| | - Yimeng Huang
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
| | - Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California Santa Barbara CA 93106 USA
| | - Brandon L Chang
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Barbara CA 93106 USA
| | - Logan Baldini
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| | - Kaamini M Dhanabalan
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| | - Eugene Li
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| | - Honghao Li
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
- Biomolecular Science and Engineering Graduate Program, University of California Santa Barbara CA 93106 USA
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| |
Collapse
|
4
|
Russo F, Civili B, Winssinger N. Bright Red Bioluminescence from Semisynthetic NanoLuc (sNLuc). ACS Chem Biol 2024; 19:1035-1039. [PMID: 38717306 PMCID: PMC11106743 DOI: 10.1021/acschembio.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Red-shifted bioluminescence is highly desirable for diagnostic and imaging applications. Herein, we report a semisynthetic NanoLuc (sNLuc) based on complementation of a split NLuc (LgBiT) with a synthetic peptide (SmBiT) functionalized with a fluorophore for BRET emission. We observed exceptional BRET ratios with diverse fluorophores, notably in the red (I674/I450 > 14), with a brightness that is sufficient for naked eye detection in blood or through tissues. To exemplify its utility, LgBiT was fused to a miniprotein that binds HER2 (affibody, ZHER2), and the selective detection of HER2+ SK-BR-3 cells over HER2- HeLa cells was demonstrated.
Collapse
Affiliation(s)
- Francesco Russo
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Beatrice Civili
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Townsend KM, Prescher JA. Recent advances in bioluminescent probes for neurobiology. NEUROPHOTONICS 2024; 11:024204. [PMID: 38390217 PMCID: PMC10883388 DOI: 10.1117/1.nph.11.2.024204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Bioluminescence is a popular modality for imaging in living organisms. The platform relies on enzymatically (luciferase) generated light via the oxidation of small molecule luciferins. Since no external light is needed for photon production, there are no concerns with background autofluorescence or photobleaching over time-features that have historically limited other optical readouts. Bioluminescence is thus routinely used for longitudinal tracking across whole animals. Applications in the brain, though, have been more challenging due to a lack of sufficiently bioavailable, bright, and easily multiplexed probes. Recent years have seen the development of designer luciferase and luciferin pairs that address these issues, providing more sensitive and real-time readouts of biochemical features relevant to neurobiology. This review highlights many of the advances in bioluminescent probe design, with a focus on the small molecule light emitter, the luciferin. Specific efforts to improve luciferin pharmacokinetics and tissue-penetrant emission are covered, in addition to applications that such probes have enabled. The continued development of improved bioluminescent probes will aid in illuminating critical neurochemical processes in the brain.
Collapse
Affiliation(s)
- Katherine M Townsend
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
| | - Jennifer A Prescher
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
- University of California, Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, United States
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California, United States
| |
Collapse
|
6
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Navarro MX, Brennan CK, Love AC, Prescher JA. Caged luciferins enable rapid multicomponent bioluminescence imaging. Photochem Photobiol 2024; 100:67-74. [PMID: 37259257 PMCID: PMC10687313 DOI: 10.1111/php.13814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Bioluminescence is a sensitive technique for imaging biological features over time. Historically, though, the modality has been challenging to employ for multiplexed tracking due to a lack of resolvable luciferase-luciferin pairs. Recent years have seen the development of numerous orthogonal probes for multi-parameter imaging. While successful, generating such tools often requires complex syntheses and lengthy enzyme evolution campaigns. This work showcases an alternative strategy for multiplexed bioluminescence that takes advantage of already-orthogonal caged luciferins and established uncaging enzymes. These probes generate unique bioluminescent signals that can be distinguished via a linear unmixing algorithm. Caged luciferins enabled two- and three-component imaging on the minutes time scale. We further showed that the tools can be used in conjunction with endogenous enzymes for multiplexed studies. Collectively, this approach lowers the barrier to multicomponent bioluminescence imaging and can be readily adopted by the broader community.
Collapse
Affiliation(s)
- Mariana X. Navarro
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Caroline K. Brennan
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Anna C. Love
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92716 (USA)
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA 92617 (USA)
| |
Collapse
|
8
|
Yun J, Baldini L, Huang Y, Li E, Li H, Chacko AN, Miller AD, Wan J, Mukherjee A. Engineering ligand stabilized aquaporin reporters for magnetic resonance imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543364. [PMID: 37333371 PMCID: PMC10274688 DOI: 10.1101/2023.06.02.543364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Imaging transgene expression in live tissues requires reporters that are detectable with deeply penetrant modalities, such as magnetic resonance imaging (MRI). Here, we show that LSAqp1, a water channel engineered from aquaporin-1, can be used to create background-free, drug-gated, and multiplex images of gene expression using MRI. LSAqp1 is a fusion protein composed of aquaporin-1 and a degradation tag that is sensitive to a cell-permeable ligand, which allows for dynamic small molecule modulation of MRI signals. LSAqp1 improves specificity for imaging gene expression by allowing reporter signals to be conditionally activated and distinguished from the tissue background by difference imaging. In addition, by engineering destabilized aquaporin-1 variants with different ligand requirements, it is possible to image distinct cell types simultaneously. Finally, we expressed LSAqp1 in a tumor model and showed successful in vivo imaging of gene expression without background activity. LSAqp1 provides a conceptually unique approach to accurately measure gene expression in living organisms by combining the physics of water diffusion and biotechnology tools to control protein stability.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Logan Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Yimeng Huang
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Eugene Li
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Honghao Li
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Asish N. Chacko
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Austin D.C. Miller
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Jinyang Wan
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Williams SJ, Gewing-Mullins JA, Lieberman WK, Kolbaba-Kartchner B, Iqbal R, Burgess HM, Colee CM, Ornelas MY, Reid-McLaughlin ES, Mills JH, Prescher JA, Leconte AM. Biochemical Analysis Leads to Improved Orthogonal Bioluminescent Tools. Chembiochem 2023; 24:e202200726. [PMID: 36592373 PMCID: PMC10265744 DOI: 10.1002/cbic.202200726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Engineered luciferase-luciferin pairs have expanded the number of cellular targets that can be visualized in tandem. While light production relies on selective processing of synthetic luciferins by mutant luciferases, little is known about the origin of selectivity. The development of new and improved pairs requires a better understanding of the structure-function relationship of bioluminescent probes. In this work, we report a biochemical approach to assessing and optimizing two popular bioluminescent pairs: Cashew/d-luc and Pecan/4'-BrLuc. Single mutants derived from Cashew and Pecan revealed key residues for selectivity and thermal stability. Stability was further improved through a rational addition of beneficial residues. In addition to providing increased stability, the known stabilizing mutations surprisingly also improved selectivity. The resultant improved pair of luciferases are >100-fold selective for their respective substrates and highly thermally stable. Collectively, this work highlights the importance of mechanistic insight for improving bioluminescent pairs and provides significantly improved Cashew and Pecan enzymes which should be immediately suitable for multicomponent imaging applications.
Collapse
Affiliation(s)
- Sierra J Williams
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA 92697, USA
| | - Jordan A Gewing-Mullins
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Whitney K Lieberman
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Bethany Kolbaba-Kartchner
- School of Molecular Sciences, Arizona State University, Physical Sciences Center PSd-D102, Tempe, AZ 85287, USA
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Reema Iqbal
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Hana M Burgess
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Clair M Colee
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Marya Y Ornelas
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Edison S Reid-McLaughlin
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Jeremy H Mills
- School of Molecular Sciences, Arizona State University, Physical Sciences Center PSd-D102, Tempe, AZ 85287, USA
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA 92697, USA
| | - Aaron M Leconte
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| |
Collapse
|
10
|
Brennan CK, Yao Z, Ionkina AA, Rathbun CM, Sathishkumar B, Prescher JA. Multiplexed bioluminescence imaging with a substrate unmixing platform. Cell Chem Biol 2022; 29:1649-1660.e4. [PMID: 36283402 PMCID: PMC9675729 DOI: 10.1016/j.chembiol.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
Bioluminescent tools can illuminate cellular features in whole organisms. Multi-component tracking remains challenging, though, owing to a lack of well-resolved probes and long imaging times. To address the need for more rapid, quantitative, and multiplexed bioluminescent readouts, we developed an analysis pipeline featuring sequential substrate administration and serial image acquisition. Light output from each luciferin is layered on top of the previous image, with minimal delay between substrate delivery. A MATLAB algorithm was written to analyze bioluminescent images generated from the rapid imaging protocol and deconvolute (i.e., unmix) signals from luciferase-luciferin pairs. Mixtures comprising three to five luciferase reporters were readily distinguished in under 50 min; this same experiment would require days using conventional workflows. We further showed that the algorithm can be used to accurately quantify luciferase levels in heterogeneous mixtures. Based on its speed and versatility, the multiplexed imaging platform will expand the scope of bioluminescence technology.
Collapse
Affiliation(s)
- Caroline K Brennan
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Zi Yao
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Anastasia A Ionkina
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Colin M Rathbun
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Multiplexed bioluminescence microscopy via phasor analysis. Nat Methods 2022; 19:893-898. [PMID: 35739310 DOI: 10.1038/s41592-022-01529-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/18/2022] [Indexed: 12/19/2022]
Abstract
Bioluminescence imaging with luciferase-luciferin pairs is a well-established technique for visualizing biological processes across tissues and whole organisms. Applications at the microscale, by contrast, have been hindered by a lack of detection platforms and easily resolved probes. We addressed this limitation by combining bioluminescence with phasor analysis, a method commonly used to distinguish spectrally similar fluorophores. We built a camera-based microscope equipped with special optical filters to directly assign phasor locations to unique luciferase-luciferin pairs. Six bioluminescent reporters were easily resolved in live cells, and the readouts were quantitative and instantaneous. Multiplexed imaging was also performed over extended time periods. Bioluminescent phasor further provided direct measures of resonance energy transfer in single cells, setting the stage for dynamic measures of cellular and molecular features. The merger of bioluminescence with phasor analysis fills a long-standing void in imaging capabilities, and will bolster future efforts to visualize biological events in real time and over multiple length scales.
Collapse
|
12
|
Liu S, Su Y, Lin MZ, Ronald JA. Brightening up Biology: Advances in Luciferase Systems for in Vivo Imaging. ACS Chem Biol 2021; 16:2707-2718. [PMID: 34780699 PMCID: PMC8689642 DOI: 10.1021/acschembio.1c00549] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Bioluminescence imaging
(BLI) using luciferase reporters is an
indispensable method for the noninvasive visualization of cell populations
and biochemical events in living animals. BLI is widely performed
with preclinical rodent models to understand disease processes and
evaluate potential cell- or gene-based therapies. However, in vivo BLI remains constrained by low photon production
and tissue attenuation, limiting the sensitivity of reporting from
small numbers of cells in deep locations and hindering its application
to larger animal models. This Review highlights recent advances in
the development of luciferase systems that improve the sensitivity
of in vivo BLI and discusses the expanding array
of biological applications.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| | - Yichi Su
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - John A. Ronald
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| |
Collapse
|
13
|
Yao Z, Caldwell DR, Love AC, Kolbaba-Kartchner B, Mills JH, Schnermann MJ, Prescher JA. Coumarin luciferins and mutant luciferases for robust multi-component bioluminescence imaging. Chem Sci 2021; 12:11684-11691. [PMID: 34659703 PMCID: PMC8442684 DOI: 10.1039/d1sc03114g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Multi-component bioluminescence imaging requires an expanded collection of luciferase-luciferin pairs that emit far-red or near-infrared light. Toward this end, we prepared a new class of luciferins based on a red-shifted coumarin scaffold. These probes (CouLuc-1s) were accessed in a two-step sequence via direct modification of commercial dyes. The bioluminescent properties of the CouLuc-1 analogs were also characterized, and complementary luciferase enzymes were identified using a two-pronged screening strategy. The optimized enzyme-substrate pairs displayed robust photon outputs and emitted a significant portion of near-infrared light. The CouLuc-1 scaffolds are also structurally distinct from existing probes, enabling rapid multi-component imaging. Collectively, this work provides novel bioluminescent tools along with a blueprint for crafting additional fluorophore-derived probes for multiplexed imaging.
Collapse
Affiliation(s)
- Zi Yao
- Department of Chemistry, University of California Irvine CA USA
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Anna C Love
- Department of Chemistry, University of California Irvine CA USA
| | - Bethany Kolbaba-Kartchner
- School of Molecular Sciences, Arizona State University Tempe AZ USA
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University Tempe AZ USA
| | - Jeremy H Mills
- School of Molecular Sciences, Arizona State University Tempe AZ USA
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University Tempe AZ USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California Irvine CA USA
- Department of Molecular Biology & Biochemistry, University of California Irvine CA USA
- Department of Pharmaceutical Sciences, University of California Irvine CA USA
| |
Collapse
|
14
|
Brennan CK, Ornelas MY, Yao ZW, Prescher JA. Multicomponent Bioluminescence Imaging with Naphthylamino Luciferins. Chembiochem 2021; 22:2650-2654. [PMID: 34139065 PMCID: PMC8496354 DOI: 10.1002/cbic.202100202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/05/2021] [Indexed: 11/07/2022]
Abstract
Bioluminescent tools have been used for decades to image processes in complex tissues and preclinical models. However, few distinct probes are available to probe multicellular interactions. We and others are addressing this limitation by engineering new luciferases that can selectively process synthetic luciferin analogues. In this work, we explored naphthylamino luciferins as orthogonal bioluminescent probes. Three analogues were prepared using an optimized synthetic route. The luciferins were found to be robust emitters with native luciferase in vitro and in cellulo. We further screened the analogues against libraries of luciferase mutants to identify unique enzyme-substrate pairs. The new probes can be used in conjunction with existing bioluminescent tools for multi-component imaging.
Collapse
Affiliation(s)
- Caroline K Brennan
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA, 92697, USA
| | - Marya Y Ornelas
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA, 92697, USA
| | - Zi W Yao
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA, 92697, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697, USA
| |
Collapse
|