1
|
Mercurio I, D’Abrosca G, della Valle M, Malgieri G, Fattorusso R, Isernia C, Russo L, Di Gaetano S, Pedone EM, Pirone L, Del Gatto A, Zaccaro L, Alberga D, Saviano M, Mangiatordi GF. Molecular interactions between a diphenyl scaffold and PED/PEA15: Implications for type II diabetes therapeutics targeting PED/PEA15 - Phospholipase D1 interaction. Comput Struct Biotechnol J 2024; 23:2001-2010. [PMID: 38770160 PMCID: PMC11103223 DOI: 10.1016/j.csbj.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
In a recent study, we have identified BPH03 as a promising scaffold for the development of compounds aimed at modulating the interaction between PED/PEA15 (Phosphoprotein Enriched in Diabetes/Phosphoprotein Enriched in Astrocytes 15) and PLD1 (phospholipase D1), with potential applications in type II diabetes therapy. PED/PEA15 is known to be overexpressed in certain forms of diabetes, where it binds to PLD1, thereby reducing insulin-stimulated glucose transport. The inhibition of this interaction reestablishes basal glucose transport, indicating PED as a potential target of ligands capable to recover glucose tolerance and insulin sensitivity. In this study, we employ computational methods to provide a detailed description of BPH03 interaction with PED, evidencing the presence of a hidden druggable pocket within its PLD1 binding surface. We also elucidate the conformational changes that occur during PED interaction with BPH03. Moreover, we report new NMR data supporting the in-silico findings and indicating that BPH03 disrupts the PED/PLD1 interface displacing PLD1 from its interaction with PED. Our study represents a significant advancement toward the development of potential therapeutics for the treatment of type II diabetes.
Collapse
Affiliation(s)
- Ivan Mercurio
- Institute of Crystallography, CNR, Via Amendola 122/o, 70126 Bari, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
- Institute of Crystallography, CNR, Via Vivaldi 43, 81100, Caserta, Italy
| | - Maria della Valle
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Annarita Del Gatto
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Domenico Alberga
- Institute of Crystallography, CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, CNR, Via Vivaldi 43, 81100, Caserta, Italy
| | | |
Collapse
|
2
|
Della Valle M, D'Abrosca G, Gentile MT, Russo L, Isernia C, Di Gaetano S, Avolio R, Castaldo R, Cocca M, Gentile G, Malgieri G, Errico ME, Fattorusso R. Polystyrene nanoplastics affect the human ubiquitin structure and ubiquitination in cells: a high-resolution study. Chem Sci 2022; 13:13563-13573. [PMID: 36507175 PMCID: PMC9682910 DOI: 10.1039/d2sc04434j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Humans are estimated to consume several grams per week of nanoplastics (NPs) through exposure to a variety of contamination sources. Nonetheless, the effects of these polymeric particles on living systems are still mostly unknown. Here, by means of CD, NMR and TEM analyses, we describe at an atomic resolution the interaction of ubiquitin with polystyrene NPs (PS-NPs), showing how a hard protein corona is formed. Moreover, we report that in human HeLa cells exposure to PS-NPs leads to a sensible reduction of ubiquitination. Our study overall indicates that PS-NPs cause significant structural effects on ubiquitin, thereby influencing one of the key metabolic processes at the base of cell viability.
Collapse
Affiliation(s)
- M Della Valle
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - G D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - M T Gentile
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - L Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - C Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - S Di Gaetano
- Institute of Biostructures and Bioimaging-CNR Via Mezzocannone 16 80134 Naples Italy
| | - R Avolio
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - R Castaldo
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - M Cocca
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - G Gentile
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - G Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - M E Errico
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - R Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|