1
|
Hartati YW, Zein MIHL, Ibrahim AU, Kharismasari CY, Syafira RS, Irkham, Gunlazuardi J, Jiwanti PK. Advanced aptamer-based sensors for monitoring theophylline. Clin Chim Acta 2025; 571:120200. [PMID: 39971148 DOI: 10.1016/j.cca.2025.120200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Theophylline is a widely used bronchodilator for treating asthma-related symptoms like shortness of breath and chest tightness. However, its narrow therapeutic plasma range (20-200 μM) necessitates careful monitoring of blood levels to prevent toxicity. Various clinical laboratory techniques have been developed for detecting theophylline, including spectroscopy, high-performance liquid chromatography (HPLC), fluorescence polarization immunoassay, and radioimmunoassay. Despite their utility, these methods are limited by complex sample preparation, long processing times, large sample volumes, and high costs. Aptamer-based biosensors have emerged as a promising alternative, offering superior selectivity and specificity compared to conventional methods. This review evaluates the performance of aptamer-based sensors in terms of sensitivity, specificity, and limit of detection, comparing them to traditional techniques. Recent studies demonstrate the advantages of aptamer-based sensors, including their simplicity, rapid response time, and cost-effectiveness, which make them ideal for point-of-care applications. The review also explores the methodologies used in aptamer-based detection, highlighting key innovations and advances in the field. Findings from the literature show how aptamer-based sensors enhance the monitoring of theophylline levels, overcoming the limitations of traditional techniques. This is the first review dedicated to discussing aptamer-based techniques for theophylline monitoring, addressing a gap in current literature.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia.
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Universitã di Bologna, Bologna 40126, Italy
| | - Abdullahi Umar Ibrahim
- Department Department of Biomedical Engineering, Near East University, Mersin 10, Turkey; Department of Medical Biochemistry, Kaduna State University, Kaduna State, Nigeria
| | - Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ratu Shifa Syafira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jakarta 16424, Indonesia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
2
|
Liu Y, Wang J, Cui G, Wang X, Xiang S, Huang W, Liu C. RNA aptamer-based CRISPR-Cas12a system for enhanced small molecule detection and point-of-care testing. Int J Biol Macromol 2025; 303:140675. [PMID: 39914548 DOI: 10.1016/j.ijbiomac.2025.140675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
The CRISPR-Cas12a system has emerged as a robust platform for small molecule detection. However, existing methodologies primarily emphasize DNA aptamer-based strategies. This study introduces an RNA aptamer-based CRISPR-Cas12a approach due to the fact that the majority of small molecules lack corresponding DNA aptamers. The approach employs theophylline RNA aptamer (TA) to regulate Cas12a activity through competitive inhibition of crRNA. The results demonstrate that this system effectively detects theophylline (TP) in various food, beverage, and human serum samples, exhibiting excellent selectivity and sensitivity. Additionally, a visual paper-based detection system showcases its applicability for real-time analysis in food matrices and human serum. The RNA aptamer-based CRISPR-Cas12a strategy holds significant potential for diverse biomedical applications, offering a versatile tool for future sensing applications through customized RNA aptamer designs for small molecules.
Collapse
Affiliation(s)
- Yuanfang Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jiaqi Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Gangfeng Cui
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, PR China
| | - Xiaolan Wang
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, PR China.
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, PR China.
| | - Chaoxing Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
3
|
Alkhamis O, Byrd C, Canoura J, Bacon A, Hill R, Xiao Y. Exploring the relationship between aptamer binding thermodynamics, affinity, and specificity. Nucleic Acids Res 2025; 53:gkaf219. [PMID: 40156861 PMCID: PMC11952966 DOI: 10.1093/nar/gkaf219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Aptamers are oligonucleotide-based bioreceptors that are selected in vitro from randomized libraries to bind specific molecules with high affinity, and are proving popular for applications in diagnostics, bioimaging, and therapeutics. A better understanding of aptamer-ligand interactions could facilitate sequence engineering efforts to improve aptamer binding properties, and perhaps eventually allow for the direct design of high-quality aptamers. To date, however, there have been very few comprehensive studies exploring the relationship between aptamer binding properties and thermodynamics. Isothermal titration calorimetry (ITC) is a gold-standard method for studying the thermodynamics of ligand-receptor interactions. In this work, we have compiled ITC-derived thermodynamic binding data from 317 small-molecule-binding DNA aptamers, along with specificity profiles for ∼6000 aptamer-ligand pairs, and performed systematic analysis of the resulting datasets. This analysis revealed a variety of interesting patterns and trends. For example, ligand binding for most aptamers is generally driven solely by enthalpy, and aptamers with the highest binding enthalpy and greatest entropic binding penalties consistently have high specificity. We envision that the expansion and further analysis of such datasets will yield a far better understanding of the complex interplay between the various non-covalent interactions underlying aptamer-ligand recognition.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Caleb Byrd
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Adara Bacon
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Ransom Hill
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| |
Collapse
|
4
|
Chen J, Lei Y, Zhu G, Feng D, Lu C, Yang K, Wei Y. A highly sensitive photoelectrochemical sensor for the detection of theophylline based on the photoelectrocatalytic activity of a nanocomposite of polydopamine nanospheres and gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1290-1295. [PMID: 39831561 DOI: 10.1039/d4ay02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles in situ. The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating. The detection medium employed was TP in 0.1 M phosphate buffered saline (PBS, pH 7.00). The proposed PEC sensor demonstrated exceptional photoelectric catalytic capability with respect to TP oxidation. Under light irradiation, electron-hole pairs were generated in ZnS. Electrons from TP oxidation trapped holes and produced an anodic photocurrent. The modification process of electrodes and TP oxidation recognition performance were studied by the I-T method. A linear relationship was observed between the oxidation photocurrent of TP and its concentration over a range of 0.5 to 50 μg mL-1. The detection limit was established at 0.13 μg mL-1 (S/N = 3). This sensor exhibited optimal selectivity, prolonged stability, and commendable reproducibility when determining TP. It was successfully applied to measure TP content in various matrices, including tea, biological samples, and blood samples, with acceptable recovery rates ranging from 95.3% to 107.7%.
Collapse
Affiliation(s)
- Jiexia Chen
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern, Wuhu 241002, China
| | - Yuanyuan Lei
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Gang Zhu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Dexiang Feng
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Changning Lu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Kexin Yang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yan Wei
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
5
|
Wang L, Canoura J, Byrd C, Nguyen T, Alkhamis O, Ly P, Xiao Y. Examining the Relationship between Aptamer Complexity and Molecular Discrimination of a Low-Epitope Target. ACS CENTRAL SCIENCE 2024; 10:2213-2228. [PMID: 39735321 PMCID: PMC11672540 DOI: 10.1021/acscentsci.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 12/31/2024]
Abstract
Aptamers are oligonucleotide-based affinity reagents that are increasingly being used in various applications. Systematic evolution of ligands by exponential enrichment (SELEX) has been widely used to isolate aptamers for small-molecule targets, but it remains challenging to generate aptamers with high affinity and specificity for targets with few functional groups. To address this challenge, we have systematically evaluated strategies for optimizing the isolation of aptamers for (+)-methamphetamine, a target for which previously reported aptamers have weak or no binding affinity. We perform four trials of library-immobilized SELEX against (+)-methamphetamine and demonstrate that N30 libraries do not yield high-quality aptamers. However, by using a more complex N40 library design, stringent counter-SELEX, and fine-tuned selection conditions, we identify aptamers with high affinity for (+)-methamphetamine and better selectivity relative to existing antibodies. Bioinformatic analysis from our selections reveals that high-quality aptamers contain long conserved motifs and are more informationally dense. Finally, we demonstrate that our best aptamer can rapidly detect (+)-methamphetamine at toxicologically relevant concentrations in saliva in a colorimetric dye-displacement assay. The insights provided here demonstrate the challenges in generating high-quality aptamers for low complexity small-molecule targets and will help guide the design of more efficient future selection efforts.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Caleb Byrd
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Thinh Nguyen
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Phuong Ly
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Liustrovaite V, Ratautaite V, Ramanaviciene A, Plikusiene I, Malinovskis U, Erts D, Sarvutiene J, Ramanavicius A. Electrochemical sensor for vascular endothelial growth factor based on self-assembling DNA aptamer structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177151. [PMID: 39461532 DOI: 10.1016/j.scitotenv.2024.177151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Developing vascular endothelial growth factor (VEGF) protein is essential for early cancer diagnosis and cancer treatment monitoring. This study presents the design and characterisation of an electrochemical sensor utilising a self-assembling DNA aptamer structure for the sensitive and selective detection of VEGF. The aptamer structure comprises three different parts of single-stranded DNA that are assembled prior to integration into the sensor. Polypyrrole (Ppy)-based layers were deposited onto screen-printed carbon electrodes (SPCEs) using an electrochemical deposition technique, followed by the entrapment of a self-assembled DNA aptamer structure within electrochemically formed Ppy matrix ((DNA aptamer)/Ppy). The response to the sensor toward VEGF was measured by the pulsed amperometric detection (PAD), highlighting the enhanced performance of DNA aptamer/Ppy configuration compared to bare Ppy. The sensor exhibited high sensitivity, achieving a limit of detection (LOD) of 0.21 nM for VEGF. The interaction behaviour between VEGF in the solution and the immobilise DNA aptamer/Ppy-based structure was analysed using Langmuir isotherm model. The developed electrochemical biosensor is promising for in vitro applications in early cancer diagnostics and treatment monitoring, enabling rapid screening of patient samples.
Collapse
Affiliation(s)
- Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania; NanoTechnas, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania
| | - Ieva Plikusiene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania
| | - Uldis Malinovskis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania; Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Raina Blvd. 19, Riga LV-1586, Latvia
| | - Donats Erts
- Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Raina Blvd. 19, Riga LV-1586, Latvia; Department of Chemistry, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Str. 1, Riga LV-1004, Latvia
| | - Julija Sarvutiene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, Vilnius LT-10257, Lithuania.
| |
Collapse
|
7
|
Datta M, Liu J. A DNA Aptamer for 2-Aminopurine: Binding-Induced Fluorescence Quenching. Chem Asian J 2024; 19:e202400817. [PMID: 39251403 PMCID: PMC11613817 DOI: 10.1002/asia.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
2-Aminopurine (2AP) is a fluorescent analog of adenine, and its unique properties make it valuable in various biochemical and biotechnological applications. Its fluorescence property probes local dynamics in DNA and RNA because stacking with the surrounding bases quench its fluorescence. 2AP-labeled DNA or RNA sequences have been used for the detection of genetic mutations, viral RNA, or other nucleic acid-based markers associated with diseases like cancer and infectious diseases. In this study, we isolated aptamers for 2AP using the library immobilization capture-SELEX technique. A dominating aptamer family was isolated after 15 rounds of selection. The Kd values for the most abundant 2AP1 aptamer are 209 nM in a fluorescence assay and 72 nM in an isothermal titration calorimetry test. A 32 nM 2AP limit of detection was tested based on its intrinsic fluorescence change upon aptamer binding. Additionally, we conducted some mutation analysis. Furthermore, we tested the selectivity of this aptamer and discovered that it can bind adenine and adenosine with approximately 100-fold lower affinity than 2AP.
Collapse
Affiliation(s)
- Meheta Datta
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterloo, OntarioN2 L 3G1Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterloo, OntarioN2 L 3G1Canada
| |
Collapse
|
8
|
Nguyen MD, Osborne MT, Prevot GT, Churcher ZR, Johnson PE, Simine L, Dauphin-Ducharme P. Truncations and in silico docking to enhance the analytical response of aptamer-based biosensors. Biosens Bioelectron 2024; 265:116680. [PMID: 39213817 DOI: 10.1016/j.bios.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Aptamers are short oligonucleotides capable of binding specifically to various targets (i.e., small molecules, proteins, and whole cells) which have been introduced in biosensors such as in the electrochemical aptamer-based (E-AB) sensing platform. E-AB sensors are comprised of a redox-reporter-modified aptamer attached to an electrode that undergoes, upon target addition, a binding-induced change in electron transfer rates. To date, E-AB sensors have faced a limitation in the translatability of aptamers into the sensing platform presumably because sequences obtained from Systematic Evolution of Ligands by Exponential Enrichment (SELEX) are typically long (>80 nucleotides) and that obtaining structural information remains time and resource consuming. In response, we explore the utility of aptamer base truncations and in silico docking to improve their translatability into E-AB sensors. Here, we first apply this to the glucose aptamer, which we characterize in solution using NMR methods to guide design and translate truncated variants in E-AB biosensors. We further investigated the applicability of the truncation and computational approaches to four other aptamer systems (vancomycin, cocaine, methotrexate and theophylline) from which we derived functional E-AB sensors. We foresee that our strategy will increase the success rate of translating aptamers into sensing platforms to afford low-cost measurements of molecules directly in undiluted complex matrices.
Collapse
Affiliation(s)
- Minh-Dat Nguyen
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Meghan T Osborne
- Department of Chemistry, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Guy Terence Prevot
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Zachary R Churcher
- Department of Chemistry, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Lena Simine
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | | |
Collapse
|
9
|
Stangherlin S, Ding Y, Liu J. Dissociation Constant (K d) Measurement for Small-Molecule Binding Aptamers: Homogeneous Assay Methods and Critical Evaluations. SMALL METHODS 2024:e2401572. [PMID: 39511863 DOI: 10.1002/smtd.202401572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Since 1990, numerous aptamers have been isolated and discovered for use in various analytical, biomedical, and environmental applications. This trend continues to date. A critical step in the characterization of aptamer binding is to measure its binding affinity toward both target and non-target molecules. Dissociation constant (Kd) is the most commonly used value in characterizing aptamer binding. In this article, homogenous assays are reviewed for aptamers that can bind small-molecule targets. The reviewed methods include label-free methods, such as isothermal titration calorimetry, intrinsic fluorescence of target molecules, DNA staining dyes, and nuclease digestion assays, and labeled methods, such as the strand displacement reaction. Some methods are not recommended, such as those based on the aggregation of gold nanoparticles and the desorption of fluorophore-labeled DNA from nanomaterials. The difference between the measured apparent Kd and the true Kd of aptamer binding is stressed. In addition, avoiding the titration regime and paying attention to the time required to reach equilibrium are discussed. Finally, it is important to include mutated non-binding sequences as controls.
Collapse
Affiliation(s)
- Stefen Stangherlin
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
10
|
Liu T, Simine L. DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression. J Chem Inf Model 2024; 64:5617-5623. [PMID: 38980667 DOI: 10.1021/acs.jcim.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The design of biosequences for biosensing and therapeutics is a challenging multistep search and optimization task. In principle, computational modeling may speed up the design process by virtual screening of sequences based on their binding affinities to target molecules. However, in practice, existing machine-learned models trained to predict binding affinities lack the flexibility with respect to reaction conditions, and molecular dynamics simulations that can incorporate reaction conditions suffer from high computational costs. Here, we describe a computational approach called DeltaGzip that evaluates the free energy of binding in biopolymer-ligand complexes from ultrashort equilibrium molecular dynamics simulations. The entropy of binding is evaluated using the Kolmogorov complexity definition of entropy and approximated using a lossless compression algorithm, Gzip. We benchmark the method on a well-studied data set of protein-ligand complexes comparing the predictions of DeltaGzip to the free energies of binding obtained using Jarzynski equality and experimental measurements.
Collapse
Affiliation(s)
- Tao Liu
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Lena Simine
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
11
|
Shi L, Jin Y, Liu J. Intramolecular aptamer switches. Analyst 2024; 149:745-750. [PMID: 38193253 DOI: 10.1039/d3an02022c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Aptamer switches as effective biosensing tools have become a focal point of research in engineered aptasensors. Intramolecular aptamer switches are more versatile, affordable, and simpler than classical "open-close" and strand displacement-based aptamer switches. Recently, many new aptamers with an overall hairpin structure have been reported. In this study, intramolecular aptamer switches were developed by adding new base pairs to the end of aptamers. The additional nucleotides can pair with the internal domains of the aptamer, causing a change in its conformation from the original secondary structure without a target. When a target binds to an aptamer, a marked change in the structure of the aptamer is expected. As models for testing this intramolecular aptamer switch idea, aptamers of oxytetracycline (OTC), 17β-estradiol (E2), and adenosine were employed. When the additional base pairs are too long, binding the target to the aptamer becomes more challenging. This research offers valuable insights into the development of intramolecular aptamer switches and their potential applications in biosensor design.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
12
|
Ding Y, Gu L, Wang X, Zhang Z, Zhang H, Liu J. Affinity-Guided Coevolution of Aptamers for Guanine, Xanthine, Hypoxanthine, and Adenine. ACS Chem Biol 2024; 19:208-216. [PMID: 38194356 DOI: 10.1021/acschembio.3c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The simultaneous evolution of multiple aptamers can drastically increase the speed of aptamer discovery. Most previous studies used the same concentration for different targets, leading to the dominance of the libraries by one or a few aptamers and a low success rate. To foster the best aptamers to grow independently in the sequence space, it is important to (1) use low target concentrations close to their dissociation constants and (2) stop at an early round before any sequence starts to dominate. In this study, we demonstrate this affinity-guided selection concept using the capture-SELEX method to isolate aptamers for four important purines: guanine (5 μM), xanthine (50 μM), hypoxanthine (10 μM), and adenine (10 μM). The round 9 library was split, and in round 10, the four targets were individually used to elute the binding sequences. Using thioflavin T fluorescence spectroscopy and isothermal titration calorimetry, we confirmed highly selective aptamers for xanthine, guanine, and adenine. These aptamers have Kd values below 1 μM and around 100-fold selectivity against most competing analytes, and they compare favorably with existing RNA aptamers and riboswitches. A separate selection was performed using hypoxanthine alone, and no selective aptamer was achieved, even with negative selection, explaining the lack of its aptamer in our mixed selection. This affinity-guided multiplex SELEX study offers fundamental insights into aptamer selection and provides high-quality aptamers for three important purines.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lide Gu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ziyu Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hanxiao Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Rousseau CR, Kumakli H, White RJ. Perspective-Assessing Electrochemical, Aptamer-Based Sensors for Dynamic Monitoring of Cellular Signaling. ECS SENSORS PLUS 2023; 2:042401. [PMID: 38152504 PMCID: PMC10750225 DOI: 10.1149/2754-2726/ad15a1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Electrochemical, aptamer-based (E-AB) sensors provide a generalizable strategy to quantitatively detect a variety of targets including small molecules and proteins. The key signaling attributes of E-AB sensors (sensitivity, selectivity, specificity, and reagentless and dynamic sensing ability) make them well suited to monitor dynamic processes in complex environments. A key bioanalytical challenge that could benefit from the detection capabilities of E-AB sensors is that of cell signaling, which involves the release of molecular messengers into the extracellular space. Here, we provide a perspective on why E-AB sensors are suited for this measurement, sensor requirements, and pioneering examples of cellular signaling measurements.
Collapse
Affiliation(s)
- Celeste R. Rousseau
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Hope Kumakli
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| |
Collapse
|
14
|
Huang PJJ, Evans NM, Lu C, Li AZ, Dieckmann T, Liu J. Cross-Binding of Adenosine by Aptamers Selected Using Theophylline. Chembiochem 2023; 24:e202300566. [PMID: 37747943 DOI: 10.1002/cbic.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
We recently reported that some adenosine binding aptamers can also bind caffeine and theophylline with around 20-fold lower affinities. This discovery led to the current work to examine the cross-binding of adenosine to theophylline aptamers. For the DNA aptamer for theophylline, cross-binding to adenosine was observed, and the affinity was 18 to 38-fold lower for adenosine based on assays using isothermal titration calorimetry and ThT fluorescence spectroscopy. The binding complexes were characterized using NMR spectroscopy, and both adenosine and theophylline showed an overall similar binding structure to the DNA theophylline aptamer, although small differences were also observed. In contrast, the RNA aptamer did not show binding to adenosine, although both aptamers have very similar relative selectivity for various methylxanthines including caffeine. After a negative selection, a few new aptamers with completely different primary sequences for theophylline were obtained and they did not show binding to adenosine. Thus, there are many ways for aptamers to bind theophylline and some can have cross-binding to adenosine. In biology, theophylline, caffeine, and adenosine can bind to the same protein receptors to regulate sleep, and their binding to the same DNA motifs may suggest an early role of nucleic acids in similar regulatory functions.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Natasha M Evans
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Chang Lu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| |
Collapse
|
15
|
Ding Y, Xie Y, Li AZ, Huang PJJ, Liu J. Cross-Binding of Four Adenosine/ATP Aptamers to Caffeine, Theophylline, and Other Methylxanthines. Biochemistry 2023; 62:2280-2288. [PMID: 37433121 DOI: 10.1021/acs.biochem.3c00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The classical DNA aptamer for adenosine and ATP was selected twice using ATP as the target in 1995 and 2005, respectively. In 2022, this motif appeared four more times from selections using adenosine, ATP, theophylline, and caffeine as targets, suggesting that this aptamer can also bind methylxanthines. In this work, using thioflavin T fluorescence spectroscopy, this classical DNA aptamer showed Kd values for adenosine, theophylline, and caffeine of 9.5, 101, and 131 μM, respectively, and similar Kd values were obtained using isothermal titration calorimetry. Binding to the methylxanthines was also observed for the newly selected Ade1301 aptamer but not for the Ade1304 aptamer. The RNA aptamer for ATP also had no binding to the methylxanthines. Molecular dynamics simulations were performed using the classical DNA and RNA aptamers based on their NMR structures, and the simulation results were consistent with the experimental observations, explaining the selectivity profiles. This study suggests that a broader range of target analogues need to be tested for aptamers. For the detection of adenosine and ATP, the Ade1304 aptamer is a better choice due to its better selectivity.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yachen Xie
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Hauf S, Yokobayashi Y. Chemical control of phase separation in DNA solutions. Chem Commun (Camb) 2023; 59:3751-3754. [PMID: 36911995 DOI: 10.1039/d2cc06901f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We designed a series of DNA sequences comprising a trinucleotide repeat segment and a small molecule-binding aptamer. Optimization of the DNA sequences and reaction conditions enabled chemical control of phase separation of DNA condensates. Our results demonstrate a new strategy to regulate biomolecular phase transition.
Collapse
Affiliation(s)
- Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 904-0495, Japan.
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 904-0495, Japan.
| |
Collapse
|
17
|
Ding Y, Liu J. Pushing Adenosine and ATP SELEX for DNA Aptamers with Nanomolar Affinity. J Am Chem Soc 2023; 145:7540-7547. [PMID: 36947745 DOI: 10.1021/jacs.3c00848] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The classical DNA aptamer for adenosine and ATP has been the most used small molecule binding aptamer for biosensing, imaging, and DNA nanotechnology. This sequence has recurred multiple times in previous aptamer selections, and all previous selections used a high concentration of ATP as the target. Herein, two separate selections were performed using adenosine and ATP as targets. By pushing the target concentrations down to the low micromolar range, two new aptamers with Kd as low as 230 nM were obtained, showing around 30-fold higher affinity compared to the classical aptamer. The classical aptamer sequence still dominated the library in the early rounds of the selections, but it was suppressed in the later rounds. The new aptamers bind to one target molecule instead of two. Mutation studies confirmed their secondary structures and specific binding. Using the deep sequencing data from the selections, long-standing questions such as the existence of one-site aptamers and mutation distribution in the classical aptamer were addressed. Comparisons were made with previously reported DNA aptamers for ATP. Finally, a strand-displacement biosensor was tested showing selectivity for adenosine and its nucleotides.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Huang PJJ, Liu J. Simultaneous Detection of L-Lactate and D-Glucose Using DNA Aptamers in Human Blood Serum. Angew Chem Int Ed Engl 2023; 62:e202212879. [PMID: 36693796 DOI: 10.1002/anie.202212879] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
L-lactate is a key metabolite indicative of physiological states, glycolysis pathways, and various diseases such as sepsis, heart attack, lactate acidosis, and cancer. Detection of lactate has been relying on a few enzymes that need additional oxidants. In this work, DNA aptamers for L-lactate were obtained using a library-immobilization selection method and the highest affinity aptamer reached a Kd of 0.43 mM as determined using isothermal titration calorimetry. The aptamers showed up to 50-fold selectivity for L-lactate over D-lactate and had little responses to other closely related analogs such as pyruvate or 3-hydroxybutyrate. A fluorescent biosensor based on the strand displacement method showed a limit of detection of 0.55 mM L-lactate, and the sensor worked in 90 % serum. Simultaneous detection of L-lactate and D-glucose in the same solution was achieved. This work has broadened the scope of aptamers to simple metabolites and provided a useful probe for continuous and multiplexed monitoring.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
19
|
Zhao Y, Gao B, Chen Y, Liu J. An aptamer array for discriminating tetracycline antibiotics based on binding-enhanced intrinsic fluorescence. Analyst 2023; 148:1507-1513. [PMID: 36891736 DOI: 10.1039/d3an00154g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Tetracyclines are a class of antibiotics with a similar four-ringed structure. Due to this structural similarity, they are not easily differentiated from each other. We recently selected aptamers using oxytetracycline as a target and focused on an aptamer named OTC5, which has similar affinities for oxytetracycline (OTC), tetracycline (TC), and doxycycline (DOX). Tetracyclines exhibit an intrinsic fluorescence that is enhanced upon aptamer binding, allowing convenient binding assays and label-free detection. In this study, we analyzed the top 100 sequences from the previous selection library. Three other sequences were found to differentiate between different tetracyclines (OTC, DOX, and TC) by the selective enhancement of their intrinsic fluorescence. Among them, the OTC43 aptamer was more selective for OTC with a limit of detection (LOD) of 0.7 nM OTC, OTC22 was more selective for DOX (LOD 0.4 nM), and OTC2 was more selective for TC (0.3 nM). Using these three aptamers to form a sensor array, principal component analysis was able to discriminate between the three tetracyclines from each other and from the other molecules. This group of aptamers could be useful as probes for the detection of tetracycline antibiotics.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Biwen Gao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yijing Chen
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
20
|
Canoura J, Alkhamis O, Liu Y, Willis C, Xiao Y. High-throughput quantitative binding analysis of DNA aptamers using exonucleases. Nucleic Acids Res 2023; 51:e19. [PMID: 36583362 PMCID: PMC9976898 DOI: 10.1093/nar/gkac1210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Aptamers are nucleic acid bioreceptors that have been used in various applications including medical diagnostics and as therapeutic agents. Identifying the most optimal aptamer for a particular application is very challenging. Here, we for the first time have developed a high-throughput method for accurately quantifying aptamer binding affinity, specificity, and cross-reactivity via the kinetics of aptamer digestion by exonucleases. We demonstrate the utility of this approach by isolating a set of new aptamers for fentanyl and its analogs, and then characterizing the binding properties of 655 aptamer-ligand pairs using our exonuclease digestion assay and validating the results with gold-standard methodologies. These data were used to select optimal aptamers for the development of new sensors that detect fentanyl and its analogs in different analytical contexts. Our approach dramatically accelerates the aptamer characterization process and streamlines sensor development, and if coupled with robotics, could enable high-throughput quantitative analysis of thousands of aptamer-ligand pairs.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA.,Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Yingzhu Liu
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Connor Willis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA.,Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
21
|
Perez Tobia J, Huang PJJ, Ding Y, Saran Narayan R, Narayan A, Liu J. Machine Learning Directed Aptamer Search from Conserved Primary Sequences and Secondary Structures. ACS Synth Biol 2023; 12:186-195. [PMID: 36594697 DOI: 10.1021/acssynbio.2c00462] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Computer-aided prediction of aptamer sequences has been focused on primary sequence alignment and motif comparison. We observed that many aptamers have a conserved hairpin, yet the sequence of the hairpin can be highly variable. Taking such secondary structure information into consideration, a new algorithm combining conserved primary sequences and secondary structures is developed, which combines three scores based on sequence abundance, stability, and structure, respectively. This algorithm was used in the prediction of aptamers from the caffeine and theophylline selections. In the late rounds of the selections, when the libraries were converged, the predicted sequences matched well with the most abundant sequences. When the libraries were far from convergence and the sequences were deemed challenging for traditional analysis methods, this algorithm still predicted aptamer sequences that were experimentally verified by isothermal titration calorimetry. This algorithm paves a new way to look for patterns in aptamer selection libraries and mimics the sequence evolution process. It will help shorten the aptamer selection time and promote the biosensor and chemical biology applications of aptamers.
Collapse
Affiliation(s)
- Javier Perez Tobia
- Department of Computer Science, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran Narayan
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Apurva Narayan
- Department of Computer Science, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.,Department of Computer Science, Western University, London, Ontario N6A 3K7, Canada.,Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
22
|
Liu Y, Liu J. Salt-Toggled Capture Selection of Uric Acid Binding Aptamers. Chembiochem 2023; 24:e202200564. [PMID: 36394510 DOI: 10.1002/cbic.202200564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Uric acid is the end-product of purine metabolism in humans and an important biomarker for many diseases. To achieve the detection of uric acid without using enzymes, we previously selected a DNA aptamer for uric acid with a Kd of 1 μM but the aptamer required multiple Na+ ions for binding. Saturated binding was achieved with around 700 mM Na+ and the binding at the physiological condition was much weaker. In this work, a new selection was performed by alternating Mg2+ -containing buffers with Na+ and Li+ . After 13 rounds of selection, a new aptamer sequence named UA-Mg-1 was obtained. Isothermal titration calorimetry confirmed aptamer binding in both selection buffers, and the Kd was around 8 μM. The binding of UA-Mg-1 to UA required only Mg2+ . This is an indicator of successful switching of metal dependency via the salt-toggled selection method. The UA-Mg-1 aptamer was engineered into a fluorescent biosensor based on the strand-displacement assay with a limit of detection of 0.5 μM uric acid in the selection buffer. Finally, comparison with the previously reported Na+ -dependent aptamer and a xanthine/uric acid riboswitch was also made.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
23
|
Niu C, Zhang C, Liu J. Capture-SELEX of DNA Aptamers for Estradiol Specifically and Estrogenic Compounds Collectively. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17702-17711. [PMID: 36441874 DOI: 10.1021/acs.est.2c05808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Estrogenic compounds such as estrone (E1), 17β-estradiol (E2), and 17α-ethynylestradiol (EE2) are serious environmental contaminants due to their potent biological activities. At least six selections were previously reported to obtain DNA aptamers for E2, highlighting its environmental importance. A careful analysis revealed that the previous aptamers either are too long or do not bind optimally. Herein, a series of new aptamers were obtained from the capture-SELEX method with dissociation constants down to 30 nM as determined by isothermal titration calorimetry (ITC). Two aptamers were converted to structure-switching fluorescent biosensors, which achieved a limit of detection down to 3.3 and 9.1 nM E2, respectively. One aptamer showed similar binding affinities to all the three estrogens, while the other aptamer is more selective for E2. Both aptamers required Mg2+ for binding. The proposed sensors were successfully applied in the determination of E2 in wastewater. Moreover, comparisons were made with previous aptamers based on primary sequence alignment and secondary structures. Among previously reported truncated aptamers, ITC showed binding only in one of them. The newly selected aptamers have the combined advantages of small size and high affinities.
Collapse
Affiliation(s)
- Chenqi Niu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
24
|
Labas SR, Liu J. Interactions between Caffeine, Theophylline and Derivatives with Gold Nanoparticles and Implications for Aptamer-Based Label-Free Colorimetric Detection. Chempluschem 2022; 87:e202200265. [PMID: 36356981 DOI: 10.1002/cplu.202200265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Indexed: 01/31/2023]
Abstract
Caffeine, theophylline, and other methylxanthines have interesting biological activities and are consumed in high quantities globally, causing health and environmental concerns. Gold nanoparticles (AuNPs) have excellent optical properties for biosensor development, although little is known about the adsorption of these xanthine derivatives to AuNPs. In this work, interactions of these compounds with AuNPs were studied. Caffeine, theophylline and theobromine are adsorbed in a manner that affords protection against salt-induced aggregation, whereas xanthine and paraxanthine are adsorbed to destabilize and thus aggregate the AuNPs. Caffeine and theophylline are able to protect AuNPs starting at concentrations as low as 6.3 μM. Xanthine and paraxanthine induce significant AuNP aggregation at 5 μM. Adsorption was also confirmed by surface-enhanced Raman scattering (SERS). Using two recently selected DNA aptamers for caffeine and theophylline, the label-free colorimetric sensing method was tested; our results indicated that due to adsorption of these target molecules, this method cannot be directly used for their detection. The adsorption of these compounds to AuNPs may enable various detection methods such as SERS, but at the same time, it may complicate other detection methods.
Collapse
Affiliation(s)
- Sarah R Labas
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2 L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2 L 3G1, Canada
| |
Collapse
|
25
|
Zhang P, Qin K, Lopez A, Li Z, Liu J. General Label-Free Fluorescent Aptamer Binding Assay Using Cationic Conjugated Polymers. Anal Chem 2022; 94:15456-15463. [DOI: 10.1021/acs.analchem.2c03564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ke Qin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|