1
|
Zhang X, Fam KT, Dai T, Hang HC. Microbiota mechanisms in cancer progression and therapy. Cell Chem Biol 2025; 32:653-677. [PMID: 40334660 DOI: 10.1016/j.chembiol.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The composition of the microbiota in patients has been shown to correlate with cancer progression and response to therapy, highlighting unique opportunities to improve patient outcomes. In this review, we discuss the challenges and advancements in understanding the chemical mechanisms of specific microbiota species, pathways, and molecules involved in cancer progression and treatment. We also describe the modulation of cancer and immunotherapy by the microbiota, along with approaches for investigating microbiota enzymes and metabolites. Elucidating these specific microbiota mechanisms and molecules should offer new opportunities for developing enhanced diagnostics and therapeutics to improve outcomes for cancer patients. Nonetheless, many microbiota mechanisms remain to be determined and require innovative chemical genetic approaches.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tingting Dai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Mantravadi PK, Kovi BS, Reddy SR, Namasivayam GP, Kalesh K, Parthasarathy A. Probing and manipulating the gut microbiome with chemistry and chemical tools. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e6. [PMID: 40336799 PMCID: PMC12056425 DOI: 10.1017/gmb.2025.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025]
Abstract
The human gut microbiome represents an extended "second genome" harbouring about 1015 microbes containing >100 times the number of genes as the host. States of health and disease are largely mediated by host-microbial metabolic interplay, and the microbiome composition also underlies the differential responses to chemotherapeutic agents between people. Chemical information will be the key to tackle this complexity and discover specific gut microbiome metabolism for creating more personalised interventions. Additionally, rising antibiotic resistance and growing awareness of gut microbiome effects are creating a need for non-microbicidal therapeutic interventions. We classify chemical interventions for the gut microbiome into categories like molecular decoys, bacterial conjugation inhibitors, colonisation resistance-stimulating molecules, "prebiotics" to promote the growth of beneficial microbes, and inhibitors of specific gut microbial enzymes. Moreover, small molecule probes, including click chemistry probes, artificial substrates for assaying gut bacterial enzymes and receptor agonists/antagonists, which engage host receptors interacting with the microbiome, are some other promising developments in the expanding chemical toolkit for probing and modulating the gut microbiome. This review explicitly excludes "biologics" such as probiotics, bacteriophages, and CRISPR to concentrate on chemistry and chemical tools like chemoproteomics in the gut-microbiome context.
Collapse
Affiliation(s)
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (ICeMS), Kyoto University, Kyoto, Japan
| | | | | | - Karunakaran Kalesh
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
- National Horizons Centre, Darlington, UK
| | | |
Collapse
|
3
|
Yang X, Hang HC. Chemical dissection of bacterial virulence. Bioorg Med Chem 2025; 119:118047. [PMID: 39756344 DOI: 10.1016/j.bmc.2024.118047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
The emergence of antibiotic-resistant bacteria has intensified the need for novel therapeutic strategies targeting bacterial virulence rather than growth or survival. Bacterial virulence involves complex processes that enable pathogens to invade and survive within host cells. Chemical biology has become a powerful tool for dissecting these virulence mechanisms at the molecular level. This review highlights key chemical biology approaches for studying bacterial virulence, focusing on four areas: 1) regulation of virulence, where chemoproteomics has identified small molecule-protein interactions that modulate virulence gene expression; 2) identification of virulence proteins, using techniques like unnatural amino acid incorporation and activity-based protein profiling (ABPP) to uncover proteins involved in infection; 3) post-translational modifications of host proteins, where chemical probes have revealed how bacterial effectors alter host cell processes; and 4) effector-host protein interactions, with methods such as bifunctional unnatural amino acid incorporation facilitating the discovery of key host targets manipulated by bacterial effectors. Collectively, these chemical tools are providing new insights into pathogen-host interactions, offering potential therapeutic avenues that aim to disarm pathogens and combat antibiotic resistance.
Collapse
Affiliation(s)
- Xinglin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Ningbo Institute of Marine Medicine, Peking University, China.
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, United States; Department of Chemistry, Scripps Research, United States.
| |
Collapse
|
4
|
Han L, Pendleton A, Singh A, Xu R, Scott SA, Palma JA, Diebold P, Malarney KP, Brito IL, Chang PV. Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases. Cell Chem Biol 2025; 32:145-156.e9. [PMID: 38889717 PMCID: PMC11632149 DOI: 10.1016/j.chembiol.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raymond Xu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Samantha A Scott
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jaymee A Palma
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Peter Diebold
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Yang X, Hang HC. Chemical genetic approaches to dissect microbiota mechanisms in health and disease. Science 2024; 386:eado8548. [PMID: 39541443 DOI: 10.1126/science.ado8548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Advances in genomics, proteomics, and metabolomics have revealed associations between specific microbiota species in health and disease. However, the precise mechanism(s) of action for many microbiota species and molecules have not been fully elucidated, limiting the development of microbiota-based diagnostics and therapeutics. In this Review, we highlight innovative chemical and genetic approaches that are enabling the dissection of microbiota mechanisms and providing causation in health and disease. Although specific microbiota molecules and mechanisms have begun to emerge, new approaches are still needed to go beyond phenotypic associations and translate microbiota discoveries into actionable targets and therapeutic leads to prevent and treat diseases.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
6
|
Lin X, He K, Gu Z, Zhao X. Emerging chemophysiological diversity of gut microbiota metabolites. Trends Pharmacol Sci 2024; 45:824-838. [PMID: 39129061 DOI: 10.1016/j.tips.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Human physiology is profoundly influenced by the gut microbiota, which generates a wide array of metabolites. These microbiota-derived compounds serve as signaling molecules, interacting with various cellular targets in the gastrointestinal tract and distant organs, thereby impacting our immune, metabolic, and neurobehavioral systems. Recent advancements have unveiled unique physiological functions of diverse metabolites derived from tryptophan (Trp) and bile acids (BAs). This review highlights the emerging chemophysiological diversity of these metabolites and discusses the role of chemical and biological tools in analyzing and therapeutically manipulating microbial metabolism and host targets, with the aim of bridging the chemical diversity with physiological complexity in host-microbe molecular interactions.
Collapse
Affiliation(s)
- Xiaorong Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaixin He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, Zhejiang, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaohui Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Han L, Pendleton A, Singh A, Xu R, Scott SA, Palma JA, Diebold P, Malarney KP, Brito IL, Chang PV. Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587558. [PMID: 38617281 PMCID: PMC11014516 DOI: 10.1101/2024.04.01.587558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | | | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Raymond Xu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Samantha A Scott
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Jaymee A Palma
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Peter Diebold
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853
- Cornell Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
8
|
Weigert Muñoz A, Zhao W, Sieber SA. Monitoring host-pathogen interactions using chemical proteomics. RSC Chem Biol 2024; 5:73-89. [PMID: 38333198 PMCID: PMC10849124 DOI: 10.1039/d3cb00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
With the rapid emergence and the dissemination of microbial resistance to conventional chemotherapy, the shortage of novel antimicrobial drugs has raised a global health threat. As molecular interactions between microbial pathogens and their mammalian hosts are crucial to establish virulence, pathogenicity, and infectivity, a detailed understanding of these interactions has the potential to reveal novel therapeutic targets and treatment strategies. Bidirectional molecular communication between microbes and eukaryotes is essential for both pathogenic and commensal organisms to colonise their host. In particular, several devastating pathogens exploit host signalling to adjust the expression of energetically costly virulent behaviours. Chemical proteomics has emerged as a powerful tool to interrogate the protein interaction partners of small molecules and has been successfully applied to advance host-pathogen communication studies. Here, we present recent significant progress made by this approach and provide a perspective for future studies.
Collapse
Affiliation(s)
- Angela Weigert Muñoz
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Germany
| |
Collapse
|
9
|
Han L, Chang PV. Activity-based protein profiling in microbes and the gut microbiome. Curr Opin Chem Biol 2023; 76:102351. [PMID: 37429085 PMCID: PMC10527501 DOI: 10.1016/j.cbpa.2023.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023]
Abstract
Activity-based protein profiling (ABPP) is a powerful chemical approach for probing protein function and enzymatic activity in complex biological systems. This strategy typically utilizes activity-based probes that are designed to bind a specific protein, amino acid residue, or protein family and form a covalent bond through a reactivity-based warhead. Subsequent analysis by mass spectrometry-based proteomic platforms that involve either click chemistry or affinity-based labeling to enrich for the tagged proteins enables identification of protein function and enzymatic activity. ABPP has facilitated elucidation of biological processes in bacteria, discovery of new antibiotics, and characterization of host-microbe interactions within physiological contexts. This review will focus on recent advances and applications of ABPP in bacteria and complex microbial communities.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Kisthardt SC, Thanissery R, Pike CM, Foley MH, Theriot CM. The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota. J Bacteriol 2023; 205:e0018023. [PMID: 37695856 PMCID: PMC10521352 DOI: 10.1128/jb.00180-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobe that causes clinical diseases ranging from diarrhea and pseudomembranous colitis to toxic megacolon and death. C. difficile infection (CDI) is associated with antibiotic usage, which disrupts the indigenous gut microbiota and causes the loss of microbial-derived secondary bile acids that normally provide protection against C. difficile colonization. Previous work has shown that the secondary bile acid lithocholate (LCA) and its epimer isolithocholate (iLCA) have potent inhibitory activity against clinically relevant C. difficile strains. To further characterize the mechanisms by which LCA and its epimers iLCA and isoallolithocholate (iaLCA) inhibit C. difficile, we tested their minimum inhibitory concentration against C. difficile R20291 and a commensal gut microbiota panel. We also performed a series of experiments to determine the mechanism of action by which LCA and its epimers inhibit C. difficile through bacterial killing and effects on toxin expression and activity. Additionally, we tested the cytotoxicity of these bile acids through Caco-2 cell apoptosis and viability assays to gauge their effects on the host. Here, we show that the epimers iLCA and iaLCA strongly inhibit C. difficile growth in vitro while sparing most commensal Gram-negative gut microbes. We also show that iLCA and iaLCA have bactericidal activity against C. difficile, and these epimers cause significant bacterial membrane damage at subinhibitory concentrations. Finally, we observe that iLCA and iaLCA decrease the expression of the large cytotoxin tcdA, while LCA significantly reduces toxin activity. Although iLCA and iaLCA are both epimers of LCA, they have distinct mechanisms for inhibiting C. difficile. LCA epimers, iLCA and iaLCA, represent promising compounds that target C. difficile with minimal effects on members of the gut microbiota that are important for colonization resistance. IMPORTANCE In the search for a novel therapeutic that targets Clostridioides difficile, bile acids have become a viable solution. Epimers of bile acids are particularly attractive as they may provide protection against C. difficile while leaving the indigenous gut microbiota largely unaltered. This study shows that LCA epimers isolithocholate (iLCA) and LCA epimers isoallolithocholate (iaLCA) specifically are potent inhibitors of C. difficile, affecting key virulence factors including growth, toxin expression, and activity. As we move toward the use of bile acids as therapeutics, further work will be required to determine how best to deliver these bile acids to a target site within the host intestinal tract.
Collapse
Affiliation(s)
- Samantha C. Kisthardt
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Rajani Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Colleen M. Pike
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Huang Q, Zhang X, Guo Z, Fu X, Zhao Y, Kang Q, Bai L. Biosynthesis of ansamitocin P-3 incurs stress on the producing strain Actinosynnema pretiosum at multiple targets. Commun Biol 2023; 6:860. [PMID: 37596387 PMCID: PMC10439133 DOI: 10.1038/s42003-023-05227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
Microbial bioactive natural products mediate ecologically beneficial functions to the producing strains, and have been widely used in clinic and agriculture with clearly defined targets and underlying mechanisms. However, the physiological effects of their biosynthesis on the producing strains remain largely unknown. The antitumor ansamitocin P-3 (AP-3), produced by Actinosynnema pretiosum ATCC 31280, was found to repress the growth of the producing strain at high concentration and target the FtsZ protein involved in cell division. Previous work suggested the presence of additional cryptic targets of AP-3 in ATCC 31280. Herein we use chemoproteomic approach with an AP-3-derived photoaffinity probe to profile the proteome-wide interactions of AP-3. AP-3 exhibits specific bindings to the seemingly unrelated deoxythymidine diphosphate glucose-4,6-dehydratase, aldehyde dehydrogenase, and flavin-dependent thymidylate synthase, which are involved in cell wall assembly, central carbon metabolism and nucleotide biosynthesis, respectively. AP-3 functions as a non-competitive inhibitor of all three above target proteins, generating physiological stress on the producing strain through interfering diverse metabolic pathways. Overexpression of these target proteins increases strain biomass and markedly boosts AP-3 titers. This finding demonstrates that identification and engineering of cryptic targets of bioactive natural products can lead to in-depth understanding of microbial physiology and improved product titers.
Collapse
Affiliation(s)
- Qungang Huang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyue Guo
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinnan Fu
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|