1
|
Hwang S, Balana AT, Martin B, Clarkson M, Di Lello P, Wu H, Li Y, Fuhrmann J, Dagdas Y, Holder P, Schroeder CI, Miller SE, Gao X. Bioproduction Platform to Generate Functionalized Disulfide-Constrained Peptide Analogues. ACS BIO & MED CHEM AU 2024; 4:190-203. [PMID: 39184057 PMCID: PMC11342346 DOI: 10.1021/acsbiomedchemau.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/27/2024]
Abstract
Disulfide-constrained peptides (DCPs) have gained increased attention as a drug modality due to their exceptional stability and combined advantages of large biologics and small molecules. Chemical synthesis, although widely used to produce DCPs, is associated with high cost, both economically and environmentally. To reduce the dependence on solid phase peptide synthesis and the negative environmental footprint associated with it, we present a highly versatile, low-cost, and environmentally friendly bioproduction platform to generate DCPs and their conjugates as well as chemically modified or isotope-labeled DCPs. Using the DCP against the E3 ubiquitin ligase Zinc and Ring Finger 3, MK1-3.6.10, as a model peptide, we have demonstrated the use of bacterial expression, combined with Ser ligation or transglutaminase-mediated XTEN ligation, to produce multivalent MK1-3.6.10 and MK1-3.6.10 with N-terminal functional groups. We have also developed a bioproduction method for the site-specific incorporation of unnatural amino acids into recombinant DCPs by the amber codon suppression system. Lastly, we produced 15N/13C-labeled MK1-3.6.10 with high yield and assessed the performance of a semiautomated resonance assignment workflow that could be used to accelerate binding studies and structural characterization of DCPs. This study provides a proof of concept to generate functionalized DCPs using bioproduction, providing a potential solution to alleviate the reliance on hazardous chemicals, reduce the cost, and expedite the timeline for DCP discovery.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Aaron T. Balana
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Bryan Martin
- Department
of Structural Biology, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Michael Clarkson
- Department
of Structural Biology, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Paola Di Lello
- Department
of Structural Biology, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Hao Wu
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Yanjie Li
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Jakob Fuhrmann
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Yavuz Dagdas
- Department
of Protein Chemistry, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Patrick Holder
- Department
of Protein Chemistry, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Christina I. Schroeder
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Stephen E. Miller
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Xinxin Gao
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Kschonsak YT, Gao X, Miller SE, Hwang S, Marei H, Wu P, Li Y, Ruiz K, Dorighi K, Holokai L, Perampalam P, Tsai WTK, Kee YS, Agard NJ, Harris SF, Hannoush RN, de Sousa E Melo F. Potent and selective binders of the E3 ubiquitin ligase ZNRF3 stimulate Wnt signaling and intestinal organoid growth. Cell Chem Biol 2024; 31:1176-1187.e10. [PMID: 38056465 DOI: 10.1016/j.chembiol.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/21/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.
Collapse
Affiliation(s)
- Yvonne T Kschonsak
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA 94080, USA.
| | - Xinxin Gao
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA.
| | - Stephen E Miller
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA
| | - Sunhee Hwang
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA
| | - Hadir Marei
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yanjie Li
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA
| | - Karen Ruiz
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Kristel Dorighi
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Loryn Holokai
- Department of Biomarker Discovery, Genentech Inc, South San Francisco, CA 94080, USA
| | - Pirunthan Perampalam
- ProCogia Inc. under contract to Hoffmann-La Roche Limited, Toronto, Ontario M5J2P1, Canada
| | - Wen-Ting K Tsai
- Department of Antibody Engineering, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yee-Seir Kee
- Department of Antibody Engineering, Genentech Inc, South San Francisco, CA 94080, USA
| | - Nicholas J Agard
- Department of Antibody Engineering, Genentech Inc, South San Francisco, CA 94080, USA
| | - Seth F Harris
- Department of Structural Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
3
|
Li Y, Wei Y, Ultsch M, Li W, Tang W, Tombling B, Gao X, Dimitrova Y, Gampe C, Fuhrmann J, Zhang Y, Hannoush RN, Kirchhofer D. Cystine-knot peptide inhibitors of HTRA1 bind to a cryptic pocket within the active site region. Nat Commun 2024; 15:4359. [PMID: 38777835 PMCID: PMC11111691 DOI: 10.1038/s41467-024-48655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Cystine-knot peptides (CKPs) are naturally occurring peptides that exhibit exceptional chemical and proteolytic stability. We leveraged the CKP carboxypeptidase A1 inhibitor as a scaffold to construct phage-displayed CKP libraries and subsequently screened these collections against HTRA1, a trimeric serine protease implicated in age-related macular degeneration and osteoarthritis. The initial hits were optimized by using affinity maturation strategies to yield highly selective and potent picomolar inhibitors of HTRA1. Crystal structures, coupled with biochemical studies, reveal that the CKPs do not interact in a substrate-like manner but bind to a cryptic pocket at the S1' site region of HTRA1 and abolish catalysis by stabilizing a non-competent active site conformation. The opening and closing of this cryptic pocket is controlled by the gatekeeper residue V221, and its movement is facilitated by the absence of a constraining disulfide bond that is typically present in trypsin fold serine proteases, thereby explaining the remarkable selectivity of the CKPs. Our findings reveal an intriguing mechanism for modulating the activity of HTRA1, and highlight the utility of CKP-based phage display platforms in uncovering potent and selective inhibitors against challenging therapeutic targets.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuehua Wei
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Mark Ultsch
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wei Li
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wanjian Tang
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Tombling
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yoana Dimitrova
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christian Gampe
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jakob Fuhrmann
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yingnan Zhang
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|