1
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025; 23:338-354. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Han EJ, Jeong M, Lee SR, Sorensen EJ, Seyedsayamdost MR. Hirocidins, Cytotoxic Metabolites from Streptomyces hiroshimensis, Induce Mitochondrion-Mediated Apoptosis. Angew Chem Int Ed Engl 2024; 63:e202405367. [PMID: 38898540 DOI: 10.1002/anie.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Recent advances in whole genome sequencing have revealed an immense microbial potential for the production of therapeutic small molecules, even from well-known producers. To access this potential, we subjected prominent antimicrobial producers to alternative antiproliferative assays using persistent cancer cell lines. Described herein is our discovery of hirocidins, novel secondary metabolites from Streptomyces hiroshimensis with antiproliferative activities against colon and persistent breast cancer cells. Hirocidin A is an unusual nine-membered carbocyclic maleimide and hirocidins B and C are relatives with an unprecedented, bridged azamacrocyclic backbone. Mode of action studies show that hirocidins trigger mitochondrion-dependent apoptosis by inducing expression of the key apoptotic effector caspase-9. The discovery of new cytotoxins contributes to scaffold diversification in anticancer drug discovery and the reported modes of action and concise total synthetic route for variant A set the stage for unraveling specific targets and biochemical interactions of the hirocidins.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Myungeun Jeong
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Seoung Rak Lee
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Han EJ, Seyedsayamdost MR. Genome mining for new enediyne antibiotics. Curr Opin Chem Biol 2024; 81:102481. [PMID: 38917732 PMCID: PMC11323183 DOI: 10.1016/j.cbpa.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Maurya JP, Swain SS, Ramasastry SSV. Phosphine-promoted intramolecular Rauhut-Currier/Wittig reaction cascade to access (hetero)arene-fused diquinanes. Org Biomol Chem 2024; 22:5718-5723. [PMID: 38919118 DOI: 10.1039/d4ob00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
We describe the first phosphine-promoted intramolecular Rauhut-Currier reaction that triggers an intramolecular Wittig process assembling new classes of diquinanes. The one-pot strategy provides ready access to simple diquinanes and various (hetero)arene-fused diquinanes incorporated with up to two contiguous all-carbon quaternary centers under metal-free and neutral conditions. We showcased the generality of the method on a broad range of substrates and demonstrated its synthetic utility in accessing various advanced intermediates relevant to natural product synthesis and material science.
Collapse
Affiliation(s)
- Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - Subham S Swain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
6
|
Lee DY, Kim J, Lee GS, Park S, Song J, Lee BS, Lee SR, Kim KH, Kim CS. Characterization of Chemical Interactions between Clinical Drugs and the Oral Bacterium, Corynebacterium matruchotii, via Bioactivity-HiTES. ACS Chem Biol 2024; 19:973-980. [PMID: 38514380 DOI: 10.1021/acschembio.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the field of natural product research, the rediscovery of already-known compounds is one of the significant issues hindering new drug development. Recently, an innovative approach called bioactivity-HiTES has been developed to overcome this limitation, and several new bioactive metabolites have been successfully characterized by this method. In this study, we applied bioactivity-HiTES to Corynebacterium matruchotii, the human oral bacterium, with 3120 clinical drugs as potential elicitors. As a result, we identified two cryptic metabolites, methylindole-3-acetate (MIAA) and indole-3-acetic acid (IAA), elicited by imidafenacin, a urinary antispasmodic drug approved by the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). MIAA showed weak antibacterial activity against a pulmonary disease-causing Mycobacterium conceptionense with an IC50 value of 185.7 μM. Unexpectedly, we also found that C. matruchotii metabolized fludarabine phosphate, a USFDA-approved anticancer drug, to 2-fluoroadenine which displayed moderate antibacterial activity against both Bacillus subtilis and Escherichia coli, with IC50 values of 8.9 and 20.1 μM, respectively. Finally, acelarin, a prodrug of the anticancer drug gemcitabine, was found to exhibit unreported antibacterial activity against B. subtilis with an IC50 value of 33.6 μM through the bioactivity-HiTES method as well. These results indicate that bioactivity-HiTES can also be applied to discover biotransformed products in addition to finding cryptic metabolites in microbes.
Collapse
Affiliation(s)
- Da Yeong Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sehwan Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongwon Song
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Saito S, Arai MA. Methodology for awakening the potential secondary metabolic capacity in actinomycetes. Beilstein J Org Chem 2024; 20:753-766. [PMID: 38633912 PMCID: PMC11022428 DOI: 10.3762/bjoc.20.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Secondary metabolites produced by actinomycete strains undoubtedly have great potential for use in applied research areas such as drug discovery. However, it is becoming difficult to obtain novel compounds because of repeated isolation around the world. Therefore, a new strategy for discovering novel secondary metabolites is needed. Many researchers believe that actinomycetes have as yet unanalyzed secondary metabolic activities, and the associated undiscovered secondary metabolite biosynthesis genes are called "silent" genes. This review outlines several approaches to further activate the metabolic potential of actinomycetes.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Midori A Arai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|