1
|
Lee SD, Yang HL, Kim IS. Actinomadura monticuli sp. nov., isolated from Darangshi Oreum (a volcanic cone), and the reclassification of Actinomadura glauciflava Lu et al. 2003 as a later heterotypic synonym of Actinomadura luteofluorescens (Shinobu 1962) Preobrazhenskaya et al. 1975 (Approved Lists 1980). Int J Syst Evol Microbiol 2024; 74. [PMID: 39693243 DOI: 10.1099/ijsem.0.006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Two mycelium-forming actinobacterial strains, designated as DLS-47 and DLS-62T, were isolated from volcanic ash collected from the surface of a rock on the peak of Darangshi Oreum (a volcanic cone) in Jeju, Republic of Korea, and their taxonomic positions were investigated by a polyphasic approach. Both of the isolates showed growth at 20-42 °C, pH 6.0-9.0 and 0-1% (w/v) NaCl. Furthermore, DLS-47 was found to grow at 45 °C, while strain DLS-62T grew at pH 10.0 and 3% (w/v) NaCl. The 16S rRNA gene-based phylogeny showed that both of the isolates belonged to the genus Actinomadura; strain DLS-47 was most closely related to Actinomadura chokoriensis DSM 45346T (100% sequence identity), while strain DLS-62T formed a tight cluster with Actinomadura bangladeshensis DSM 45347T (99.5% sequence similarity). Morphological and chemotaxonomic characteristics supported the affiliation of the two isolates to the genus Actinomadura. Phylogenomic analysis based on 92 core gene sequences showed that both of the isolates were most closely related to A. chokoriensis DSM 45346T. Strain DLS-47 shared 100% of orthologous average nucleotide identity and digital DNA-DNA hybridization values with A. chokoriensis DSM 45346T, while strain DLS-62T showed orthologous average nucleotide identity ≤89.8% and digital DNA-DNA hybridization values ≤39.4% with strain DLS-47 and members of the genus Actinomadura. The results of phenotypic assays and comparison of overall genomic relatedness indices support the conclusion that strain DLS-47 (= KACC 23347=DSM 116423) is a strain of A. chokoriensis, while strain DLS-62T (= KACC 23345T = DSM 116424T) represents a new species of the genus Actinomadura, for which the name Actinomadura monticuli sp. nov. is proposed. Also, Actinomadura glauciflava Lu et al. 2003 is reclassified as a later heterotypic synonym of Actinomadura luteofluorescens (Shinobu 1962) Preobrazhenskaya et al. 1975 (Approved Lists 1980) based on analysis of overall genomic relatedness indices and phenotypic similarity.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - Hong Lim Yang
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
- BioPS Co., Ltd., Daejon 34054, Republic of Korea
| |
Collapse
|
2
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
3
|
The Critical Role of 12-Methyl Group of Anthracycline Dutomycin to Its Antiproliferative Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103348. [PMID: 35630823 PMCID: PMC9144609 DOI: 10.3390/molecules27103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
Anthracycline dutomycin is a tetracyclic quinone glycoside produced by Streptomyces minoensis NRRL B-5482. SW91 is a C-12 demethylated dutomycin derivative, which was identified in our previous research. In vitro cytotoxicity and apoptosis assays of these two compounds were conducted to demonstrate their antiproliferation activities. The results showed that both dutomycin and SW91 block cells at the S phase, whereas dutomycin shows more significant inhibition of cell growth. Their interactions with calf thymus DNA (CT-DNA) were investigated, with dutomycin exhibiting higher binding affinity. The molecular docking demonstrated that the 12-methyl group makes dutomycin attach to the groove of DNA. These findings suggest that dutomycin has binding higher affinity to DNA and impairs DNA replication resulting in more significant antitumor activity.
Collapse
|
4
|
Świecimska M, Golińska P, Goodfellow M. Genome-based classification of Streptomyces pinistramenti sp. nov., a novel actinomycete isolated from a pine forest soil in Poland with a focus on its biotechnological and ecological properties. Antonie van Leeuwenhoek 2022; 115:783-800. [DOI: 10.1007/s10482-022-01734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
5
|
Jang M, Hara S, Kim GH, Kim SM, Son S, Kwon M, Ryoo IJ, Seo H, Kim MJ, Kim ND, Soung NK, Kwon YT, Kim BY, Osada H, Jang JH, Ko SK, Ahn JS. Dutomycin Induces Autophagy and Apoptosis by Targeting the Serine Protease Inhibitor SERPINB6. ACS Chem Biol 2021; 16:360-370. [PMID: 33517652 DOI: 10.1021/acschembio.0c00889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy plays an important role in maintaining tumor cell progression and survival in response to metabolic stress. Thus, the regulation of autophagy can be used as a strategy for anticancer therapy. Here, we report dutomycin (DTM) as a novel autophagy enhancer that eventually induces apoptosis due to excessive autophagy. Also, human serine protease inhibitor B6 (SERPINB6) was identified as a target protein of DTM, and its novel function which is involved in autophagy was studied for the first time. We show that DTM directly binds SERPINB6 and then activates intracellular serine proteases, resulting in autophagy induction. Inhibitory effects of DTM on the function of SERPINB6 were confirmed through enzyme- and cell-based approaches, and SERPINB6 was validated as a target protein using siRNA-mediated knockdown and an overexpression test. In a zebrafish xenograft model, DTM showed a significant decrease in tumor area. Furthermore, the present findings will be expected to contribute to the expansion of novel basic knowledge about the correlation of cancer and autophagy by promoting active further research on SERPINB6, which was not previously considered the subject of cancer biology.
Collapse
Affiliation(s)
- Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Shuta Hara
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gun-Hee Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Seung Min Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sangkeun Son
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyemin Seo
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Nam-Doo Kim
- VORONOIBIO Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jae-Hyuk Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sung-Kyun Ko
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
6
|
Wang J, Zhang R, Chen X, Sun X, Yan Y, Shen X, Yuan Q. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microb Cell Fact 2020; 19:110. [PMID: 32448179 PMCID: PMC7247197 DOI: 10.1186/s12934-020-01367-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Aromatic polyketides have attractive biological activities and pharmacological properties. Different from other polyketides, aromatic polyketides are characterized by their polycyclic aromatic structure. The biosynthesis of aromatic polyketides is usually accomplished by the type II polyketide synthases (PKSs), which produce highly diverse polyketide chains by sequential condensation of the starter units with extender units, followed by reduction, cyclization, aromatization and tailoring reactions. Recently, significant progress has been made in characterization and engineering of type II PKSs to produce novel products and improve product titers. In this review, we briefly summarize the architectural organizations and genetic contributions of PKS genes to provide insight into the biosynthetic process. We then review the most recent progress in engineered biosynthesis of aromatic polyketides, with emphasis on generating novel molecular structures. We also discuss the current challenges and future perspectives in the rational engineering of type II PKSs for large scale production of aromatic polyketides.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
7
|
Fidan O, Yan R, Zhu D, Zhan J. Improved production of antifungal angucycline Sch47554 by manipulating three regulatory genes inStreptomycessp. SCC‐2136. Biotechnol Appl Biochem 2019; 66:517-526. [DOI: 10.1002/bab.1748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Ozkan Fidan
- Department of Biological EngineeringUtah State University Logan UT USA
| | - Riming Yan
- Department of Biological EngineeringUtah State University Logan UT USA
- Key Laboratory of Protection and Utilization of Subtropic PlantResources of Jiangxi ProvinceCollege of Life ScienceJiangxi Normal University Jiangxi People's Republic of China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic PlantResources of Jiangxi ProvinceCollege of Life ScienceJiangxi Normal University Jiangxi People's Republic of China
| | - Jixun Zhan
- Department of Biological EngineeringUtah State University Logan UT USA
- TCM and Ethnomedicine Innovation & Development LaboratorySchool of PharmacyHunan University of Chinese Medicine Changsha Hunan People's Republic of China
| |
Collapse
|
8
|
Lukežič T, Fayad AA, Bader C, Harmrolfs K, Bartuli J, Groß S, Lešnik U, Hennessen F, Herrmann J, Pikl Š, Petković H, Müller R. Engineering Atypical Tetracycline Formation in Amycolatopsis sulphurea for the Production of Modified Chelocardin Antibiotics. ACS Chem Biol 2019; 14:468-477. [PMID: 30747520 DOI: 10.1021/acschembio.8b01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives. We demonstrate cooperation of chelocardin polyketide synthase with tailoring enzymes involved in biosynthesis of oxytetracycline from Streptomyces rimosus. An interesting feature of chelocardin, compared with oxytetracycline, is the opposite stereochemistry of the C4 amino group. Genes involved in C4 transamination and N,N-dimethylation of oxytetracycline were heterologously expressed in an A. sulphurea mutant lacking C4-aminotransferase. Chelocardin derivatives with opposite stereochemistry of the C4 amino group, as N,N-dimethyl- epi-chelocardin and N,N-dimethyl-2-carboxamido-2-deacetyl- epi-chelocardin, were produced only when the aminotransferase from oxytetracycline was coexpressed with the N-methyltransferase OxyT. Surprisingly, OxyT exclusively accepted intermediates carrying an S-configured amino group at C4 in chelocardin. Applying medicinal chemistry approaches, several 2-carboxamido-2-deacetyl- epi-chelocardin derivatives modified at C4 were produced. Analysis of the antimicrobial activities of the modified compounds demonstrated that the primary amine in the R configuration is a crucial structural feature for activity of chelocardin. Unexpectedly, C10 glycosylated chelocardin analogues were identified, thus revealing the glycosylation potential of A. sulphurea. However, efficient glycosylation of the chelocardin backbone occurred only after engineering of a dimethylated amino group at the C4 position in the opposite S configuration, which suggests some evolutionary remains of chelocardin glycosylation.
Collapse
Affiliation(s)
- Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Chantal Bader
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Johannes Bartuli
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sebastian Groß
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Urška Lešnik
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Špela Pikl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
Malmierca MG, González-Montes L, Pérez-Victoria I, Sialer C, Braña AF, García Salcedo R, Martín J, Reyes F, Méndez C, Olano C, Salas JA. Searching for Glycosylated Natural Products in Actinomycetes and Identification of Novel Macrolactams and Angucyclines. Front Microbiol 2018; 9:39. [PMID: 29441046 PMCID: PMC5797532 DOI: 10.3389/fmicb.2018.00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Many bioactive natural products are glycosylated compounds in which the sugar components usually participate in interaction and molecular recognition of the cellular target. Therefore, the presence of sugar moieties is important, in some cases essential, for bioactivity. Searching for novel glycosylated bioactive compounds is an important aim in the field of the research for natural products from actinomycetes. A great majority of these sugar moieties belong to the 6-deoxyhexoses and share two common biosynthetic steps catalyzed by a NDP-D-glucose synthase (GS) and a NDP-D-glucose 4,6-dehydratase (DH). Based on this fact, seventy one Streptomyces strains isolated from the integument of ants of the Tribe Attini were screened for the presence of biosynthetic gene clusters (BGCs) for glycosylated compounds. Total DNAs were analyzed by PCR amplification using oligo primers for GSs and DHs and also for a NDP-D-glucose-2,3-dehydratases. Amplicons were used in gene disruption experiments to generate non-producing mutants in the corresponding clusters. Eleven mutants were obtained and comparative dereplication analyses between the wild type strains and the corresponding mutants allowed in some cases the identification of the compound coded by the corresponding cluster (lobophorins, vicenistatin, chromomycins and benzanthrins) and that of two novel macrolactams (sipanmycin A and B). Several strains did not show UPLC differential peaks between the wild type strain and mutant profiles. However, after genome sequencing of these strains, the activation of the expression of two clusters was achieved by using nutritional and genetic approaches leading to the identification of compounds of the cervimycins family and two novel members of the warkmycins family. Our work defines a useful strategy for the identification new glycosylated compounds by a combination of genome mining, gene inactivation experiments and the activation of silent biosynthetic clusters in Streptomyces strains.
Collapse
Affiliation(s)
- Mónica G Malmierca
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Lorena González-Montes
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | | | - Carlos Sialer
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Raúl García Salcedo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
10
|
Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics. Biochem Pharmacol 2017; 134:56-73. [DOI: 10.1016/j.bcp.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
11
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
12
|
Abstract
Bacterial aromatic polyketides, exemplified by anthracyclines, angucyclines, tetracyclines, and pentangular polyphenols, are a large family of natural products with diverse structures and biological activities and are usually biosynthesized by type II polyketide synthases (PKSs). Since the starting point of biosynthesis and combinatorial biosynthesis in 1984–1985, there has been a continuous effort to investigate the biosynthetic logic of aromatic polyketides owing to the urgent need of developing promising therapeutic candidates from these compounds. Recently, significant advances in the structural and mechanistic identification of enzymes involved in aromatic polyketide biosynthesis have been made on the basis of novel genetic, biochemical, and chemical technologies. This review highlights the progress in bacterial type II PKSs in the past three years (2013–2016). Moreover, novel compounds discovered or created by genome mining and biosynthetic engineering are also included.
Collapse
Affiliation(s)
- Zhuan Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|