1
|
Gilmore MC, Cava F. Bacterial peptidoglycan recycling. Trends Microbiol 2025; 33:340-353. [PMID: 39613687 DOI: 10.1016/j.tim.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024]
Abstract
During growth and division, the bacterial cell wall is remodeled, resulting in the liberation of peptidoglycan (PG) fragments which are typically reinternalized and recycled. Recycling of PG has been studied in a few model species, but its importance and diversity are not yet well understood. Here, we review how bacteria transport and recycle the components of their PG, highlighting updates and new findings.
Collapse
Affiliation(s)
- Michael C Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, SciLifeLab, Umeå University, 90187 Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, SciLifeLab, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
2
|
Sverak HE, Yaeger LN, Worrall LJ, Vacariu CM, Glenwright AJ, Vuckovic M, Al Azawi ZD, Lamers RP, Marko VA, Skorupski C, Soni AS, Tanner ME, Burrows LL, Strynadka NC. Cryo-EM characterization of the anydromuropeptide permease AmpG central to bacterial fitness and β-lactam antibiotic resistance. Nat Commun 2024; 15:9936. [PMID: 39548104 PMCID: PMC11568325 DOI: 10.1038/s41467-024-54219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
Bacteria invest significant resources into the continuous creation and tailoring of their essential protective peptidoglycan (PG) cell wall. Several soluble PG biosynthesis products in the periplasm are transported to the cytosol for recycling, leading to enhanced bacterial fitness. GlcNAc-1,6-anhydroMurNAc and peptide variants are transported by the essential major facilitator superfamily importer AmpG in Gram-negative pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Accumulation of GlcNAc-1,6-anhydroMurNAc-pentapeptides also results from β-lactam antibiotic induced cell wall damage. In some species, these products upregulate the β-lactamase AmpC, which hydrolyzes β-lactams to allow for bacterial survival and drug-resistant infections. Here, we have used cryo-electron microscopy and chemical synthesis of substrates in an integrated structural, biochemical, and cellular analysis of AmpG. We show how AmpG accommodates the large GlcNAc-1,6-anhydroMurNAc peptides, including a unique hydrophobic vestibule to the substrate binding cavity, and characterize residues involved in binding that inform the mechanism of proton-mediated transport.
Collapse
Affiliation(s)
- Helena E Sverak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Luke N Yaeger
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, Canada
| | | | - Amy J Glenwright
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Zayni-Dean Al Azawi
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ryan P Lamers
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Victoria A Marko
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Clarissa Skorupski
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Cj Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, Canada.
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Mayer VMT, Tomek MB, Figl R, Borisova M, Hottmann I, Blaukopf M, Altmann F, Mayer C, Schäffer C. Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG. BMC Microbiol 2020; 20:352. [PMID: 33203363 PMCID: PMC7670621 DOI: 10.1186/s12866-020-02006-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Gram-negative oral pathogen Tannerella forsythia strictly depends on the external supply of the essential bacterial cell wall sugar N-acetylmuramic acid (MurNAc) for survival because of the lack of the common MurNAc biosynthesis enzymes MurA/MurB. The bacterium thrives in a polymicrobial biofilm consortium and, thus, it is plausible that it procures MurNAc from MurNAc-containing peptidoglycan (PGN) fragments (muropeptides) released from cohabiting bacteria during natural PGN turnover or cell death. There is indirect evidence that in T. forsythia, an AmpG-like permease (Tanf_08365) is involved in cytoplasmic muropeptide uptake. In E. coli, AmpG is specific for the import of N-acetylglucosamine (GlcNAc)-anhydroMurNAc(-peptides) which are common PGN turnover products, with the disaccharide portion as a minimal requirement. Currently, it is unclear which natural, complex MurNAc sources T. forsythia can utilize and which role AmpG plays therein. RESULTS We performed a screen of various putative MurNAc sources for T. forsythia mimicking the situation in the natural habitat and compared bacterial growth and cell morphology of the wild-type and a mutant lacking AmpG (T. forsythia ΔampG). We showed that supernatants of the oral biofilm bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and of E. coli ΔampG, as well as isolated PGN and defined PGN fragments obtained after enzymatic digestion, namely GlcNAc-anhydroMurNAc(-peptides) and GlcNAc-MurNAc(-peptides), could sustain growth of T. forsythia wild-type, while T. forsythia ΔampG suffered from growth inhibition. In supernatants of T. forsythia ΔampG, the presence of GlcNAc-anhMurNAc and, unexpectedly, also GlcNAc-MurNAc was revealed by tandem mass spectrometry analysis, indicating that both disaccharides are substrates of AmpG. The importance of AmpG in the utilization of PGN fragments as MurNAc source was substantiated by a significant ampG upregulation in T. forsythia cells cultivated with PGN, as determined by quantitative real-time PCR. Further, our results indicate that PGN-degrading amidase, lytic transglycosylase and muramidase activities in a T. forsythia cell extract are involved in PGN scavenging. CONCLUSION T. forsythia metabolizes intact PGN as well as muropeptides released from various bacteria and the bacterium's inner membrane transporter AmpG is essential for growth on these MurNAc sources, and, contrary to the situation in E. coli, imports both, GlcNAc-anhMurNAc and GlcNAc-MurNAc fragments.
Collapse
Affiliation(s)
- Valentina M T Mayer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus B Tomek
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Rudolf Figl
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Marina Borisova
- Department of Biology, Eberhard Karls Universität Tübingen, Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Isabel Hottmann
- Department of Biology, Eberhard Karls Universität Tübingen, Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Markus Blaukopf
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christoph Mayer
- Department of Biology, Eberhard Karls Universität Tübingen, Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Tübingen, Germany.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria.
| |
Collapse
|
4
|
Dik DA, Kim C, Madukoma CS, Fisher JF, Shrout JD, Mobashery S. Fluorescence Assessment of the AmpR-Signaling Network of Pseudomonas aeruginosa to Exposure to β-Lactam Antibiotics. ACS Chem Biol 2020; 15:1184-1194. [PMID: 31990176 DOI: 10.1021/acschembio.9b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gram-negative bacteria have evolved an elaborate pathway to sense and respond to exposure to β-lactam antibiotics. The β-lactam antibiotics inhibit penicillin-binding proteins, whereby the loss of their activities alters/damages the cell-wall peptidoglycan. Bacteria sense this damage and remove the affected peptidoglycan into complex recycling pathways. As an offshoot of these pathways, muropeptide chemical signals generated from the cell-wall recycling manifest the production of a class C β-lactamase, which hydrolytically degrades the β-lactam antibiotic as a resistance mechanism. We disclose the use of a fluorescence probe that detects the activation of the recycling system by the formation of the key muropeptides involved in signaling. This same probe additionally detects natural-product cell-wall-active antibiotics that are produced in situ by cohabitating bacteria.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Choon Kim
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Chinedu S. Madukoma
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joshua D. Shrout
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Soni AS, Vacariu CM, Chen JY, Tanner ME. Synthesis of a meso-Oxa-Diaminopimelic Acid Containing Peptidoglycan Pentapeptide and Coupling to the GlcNAc- anhydro-MurNAc Disaccharide. Org Lett 2020; 22:2313-2317. [PMID: 32133861 DOI: 10.1021/acs.orglett.0c00505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The syntheses of peptidoglycan (PG)-derived peptides containing meso-diaminopimelic acid (meso-Dap) are typically quite lengthy due to the need to prepare orthogonally protected meso-Dap. In this work, the preparation of the PG pentapeptide containing the isosteric analog meso-oxa-Dap is described. The synthesis relies on the ring opening of a peptide embedded aziridine via the attack of a serine residue. The pentapeptide was attached to a GlcNAc-anhydro-MurNAc disaccharide, to produce a putative substrate for the AmpG pore protein.
Collapse
Affiliation(s)
- Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Condarache M Vacariu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jeff Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Sonnabend MS, Klein K, Beier S, Angelov A, Kluj R, Mayer C, Groß C, Hofmeister K, Beuttner A, Willmann M, Peter S, Oberhettinger P, Schmidt A, Autenrieth IB, Schütz M, Bohn E. Identification of Drug Resistance Determinants in a Clinical Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis. Antimicrob Agents Chemother 2020; 64:e01771-19. [PMID: 31818817 PMCID: PMC7038268 DOI: 10.1128/aac.01771-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
With the aim to identify potential new targets to restore antimicrobial susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa isolates, we generated a high-density transposon (Tn) insertion mutant library in an MDR P. aeruginosa bloodstream isolate (isolate ID40). The depletion of Tn insertion mutants upon exposure to cefepime or meropenem was measured in order to determine the common resistome for these clinically important antipseudomonal β-lactam antibiotics. The approach was validated by clean deletions of genes involved in peptidoglycan synthesis/recycling, such as the genes for the lytic transglycosylase MltG, the murein (Mur) endopeptidase MepM1, the MurNAc/GlcNAc kinase AmgK, and the uncharacterized protein YgfB, all of which were identified in our screen as playing a decisive role in survival after treatment with cefepime or meropenem. We found that the antibiotic resistance of P. aeruginosa can be overcome by targeting usually nonessential genes that turn essential in the presence of therapeutic concentrations of antibiotics. For all validated genes, we demonstrated that their deletion leads to the reduction of ampC expression, resulting in a significant decrease in β-lactamase activity, and consequently, these mutants partly or completely lost resistance against cephalosporins, carbapenems, and acylaminopenicillins. In summary, the determined resistome may comprise promising targets for the development of drugs that may be used to restore sensitivity to existing antibiotics, specifically in MDR strains of P. aeruginosa.
Collapse
Affiliation(s)
- Michael S Sonnabend
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Kristina Klein
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Sina Beier
- Center for Bioinformatics (ZBIT), Universität Tübingen, Tübingen, Germany
| | - Angel Angelov
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Robert Kluj
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Department of Biology, Microbiology & Biotechnology, Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Department of Biology, Microbiology & Biotechnology, Universität Tübingen, Tübingen, Germany
| | - Caspar Groß
- Institut für Medizinische Genetik und Angewandte Genomik, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Kathrin Hofmeister
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Antonia Beuttner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Matthias Willmann
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Silke Peter
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Philipp Oberhettinger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Annika Schmidt
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Irazoki O, Hernandez SB, Cava F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 2019; 10:500. [PMID: 30984120 PMCID: PMC6448482 DOI: 10.3389/fmicb.2019.00500] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its biosynthesis and remodeling have always been in the spotlight when it comes to the development of antibiotics. The peptidoglycan polymer provides a protective function in bacteria, but at the same time is continuously subjected to editing activities that in some cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the environment. Several soluble muropeptides have been reported to work as signaling molecules. In this review, we summarize the mechanisms involved in muropeptide release (PG breakdown and PG recycling) and describe the known PG-receptor proteins responsible for PG sensing. Furthermore, we overview the role of muropeptides as signaling molecules, focusing on the microbial responses and their functions in the host beyond their immunostimulatory activity.
Collapse
Affiliation(s)
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Dhar S, Kumari H, Balasubramanian D, Mathee K. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa – their role in the development of resistance. J Med Microbiol 2018; 67:1-21. [DOI: 10.1099/jmm.0.000636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Supurna Dhar
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Kalai Mathee
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
10
|
Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLoS One 2017; 12:e0181932. [PMID: 28742861 PMCID: PMC5526577 DOI: 10.1371/journal.pone.0181932] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is a continuously increasing threat that severely compromises our antibiotic arsenal and causes thousands of deaths due to hospital-acquired infections by pathogens such as Pseudomonas aeruginosa, situation further aggravated by the limited development of new antibiotics. Thus, alternative strategies such as those targeting bacterial resistance mechanisms, virulence or potentiating the activity of our immune system resources are urgently needed. We have recently shown that mutations simultaneously causing the peptidoglycan recycling blockage and the β-lactamase AmpC overexpression impair the virulence of P.aeruginosa. These findings suggested that peptidoglycan metabolism might be a good target not only for fighting antibiotic resistance, but also for the attenuation of virulence and/or potentiation of our innate immune weapons. Here we analyzed the activity of the innate immune elements peptidoglycan recognition proteins (PGRPs) and lysozyme against P. aeruginosa. We show that while lysozyme and PGRPs have a very modest basal effect over P. aeruginosa, their bactericidal activity is dramatically increased in the presence of subinhibitory concentrations of the permeabilizing agent colistin. We also show that the P. aeruginosa lysozyme inhibitors seem to play a very residual protective role even in permeabilizing conditions. In contrast, we demonstrate that, once the permeability barrier is overpassed, the activity of lysozyme and PGRPs is dramatically enhanced when inhibiting key peptidoglycan recycling components (such as the 3 AmpDs, AmpG or NagZ), indicating a decisive protective role for cell-wall recycling and that direct peptidoglycan-binding supports, at least partially, the activity of these enzymes. Finally, we show that recycling blockade when occurring simultaneously with AmpC overexpression determines a further decrease in the resistance against PGRP2 and lysozyme, linked to quantitative changes in the cell-wall. Thus, our results help to delineate new strategies against P. aeruginosa infections, simultaneously targeting β–lactam resistance, cell-wall metabolism and virulence, ultimately enhancing the activity of our innate immune weapons.
Collapse
|