1
|
He H, Deng X, Wang Z, Chen J. Recent progress in the development of peptide-drug conjugates (PDCs) for cancer therapy. Eur J Med Chem 2025; 284:117204. [PMID: 39731788 DOI: 10.1016/j.ejmech.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Peptide-drug conjugates (PDCs) are emerging therapeutic agents composed of peptides, linkers, and payloads, which possess favorable targeting capability and can deliver enough payloads to the tumor sites with minimized impact on healthy tissues. However, only a few PDCs have been approved for clinical use so far. To advance the research on PDCs, this review summarizes the approved PDCs, and PDCs in clinical and preclinical stages based on the payload types. Additionally, the biological activity and pharmacokinetic properties of preclinical PDCs are detailedly described. Lastly, the challenges and future development directions of PDCs are discussed. This review aims to inspire insights into the development of PDCs for cancer treatment.
Collapse
Affiliation(s)
- Haiqi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinic Al Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhijie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Zhu J, Chen S, Liu Z, Guo J, Cao S, Long S. Recent advances in anticancer peptoids. Bioorg Chem 2023; 139:106686. [PMID: 37399616 DOI: 10.1016/j.bioorg.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Since most tumors become resistant to drugs in a gradual and irreversible manner, making treatment less effective over time, anticancer drugs require continuous development. Peptoids are a class of peptidomimetics that can be easily synthesized and optimized. They exhibit a number of unique characteristics, including protease resistance, non-immunogenicity, do not interfere with peptide functionality and skeleton polarity, and can adopt different conformations. They have been studied for their efficacy in different cancer therapies, and can be considered as a promising alternative molecular category for the development of anticancer drugs. Herein, we discuss the extensive recent advances in peptoids and peptoid hybrids in the treatment of cancers such as prostate, breast, lung, and other ones, in the hope of providing a reference for the further development of peptoid anticancer drugs.
Collapse
Affiliation(s)
- Jidan Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
3
|
Nitrobenzoxadiazole derivatives of the rat selective toxicant norbormide as fluorescent probes for live cell imaging. Bioorg Med Chem 2022; 59:116670. [DOI: 10.1016/j.bmc.2022.116670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
|
4
|
Yanagimichi M, Nishino K, Sakamoto A, Kurodai R, Kojima K, Eto N, Isoda H, Ksouri R, Irie K, Kambe T, Masuda S, Akita T, Maejima K, Nagao M. Analyses of putative anti-cancer potential of three STAT3 signaling inhibitory compounds derived from Salvia officinalis. Biochem Biophys Rep 2020; 25:100882. [PMID: 33392396 PMCID: PMC7772785 DOI: 10.1016/j.bbrep.2020.100882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 12/05/2022] Open
Abstract
The extract of Salvia officinalis (Common Sage) exhibited inhibitory activity of STAT3 signal after screening of several plants extracts using the STAT3-responsive reporter system. Cirsiliol, luteolin, and carnosol were identified from the methanol extract of Silvia officinalis as inhibitors of STAT3 signaling and the effects of these three compounds on STAT3 protein or growth inhibition on cancer cells was compared. Luteolin at the dose of 90 μM clearly suppressed the phosphorylation of STAT3 induced by IL-6, while carnosol was prone to decrease total STAT3 proteins at high doses (>90 μM). Cirsiliol had almost no effect. Since the three compounds exhibited similar concentration-dependent suppression patterns in the reporter assay except for cirsiliol became plateau beyond 30 μM, these compounds appeared to function as STAT3 inhibitory factors in different ways. The direct anti-proliferative activity of three compounds was examined with or without the anti-cancer drug gefitinib using HepG2 and A549 cells. The anti-proliferative effect of the three compounds was additively enhanced by gefitinib. At the doses of 3.6 μM, statistically significant suppression of proliferation was observed in HepG2 cells only by cirsiliol among the three compounds in the absence of gefitinib but all three compounds were prone to suppress the proliferation of HepG2 cells and A549 cells dose-dependently although cirsiliol showed a modest dose-dependency and this suppression of proliferation was enhanced by the addition of gefitinib. Cirsiliol, a dimethyoxylated flavone, activated the natural killer activity of KHYG-1 cells against erythroleukemia K562 cells like a hexamethoxylated flavone, nobiletin, suggesting that it may also have an indirect anti-cancer potential through activation of NK cells. These results shed light on the putative anti-cancer potential of Salvia officinalis. Carnosol, luteolin and cirsiliol were identified as STAT3 signal inhibitors in S. officinalis. Cirsiliol inhibited the STAT3-responsive reporter expression at 7.5 μM but showed low dose-dependency at higher doses. Cirsiliol at 90 μM showed almost no effect on phosphorylation of STAT3 and weakly suppressed total STAT3. Cirsiliol exhibited anti-proliferative activity at 3.6 μM against HepG2 cells and A549 cells but showed low dose-dependency. Cirsiliol activated NK cells by stimulating exocytosis of granules for cytolysis.
Collapse
Affiliation(s)
- Maho Yanagimichi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Akiho Sakamoto
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryusei Kurodai
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Kojima
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Nozomu Eto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Riadh Ksouri
- Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050, Hammam-lif, Tunisia
| | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Seiji Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Toru Akita
- Nippon Shinyaku CO., LTD., Kyoto, 601-8550, Japan
| | | | - Masaya Nagao
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
DTNA promotes HBV-induced hepatocellular carcinoma progression by activating STAT3 and regulating TGFβ1 and P53 signaling. Life Sci 2020; 258:118029. [PMID: 32619495 DOI: 10.1016/j.lfs.2020.118029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Hepatitis B virus (HBV) infection causes liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC) development, but the underlying mechanism remains poorly understood. This study aimed to investigate the roles and molecular mechanisms of Dystrobrevin-α (DTNA) in HBV-induced liver cirrhosis and HCC pathogenesis. METHODS DTNA expression was bioinformatically analyzed using the GEO database. DTNA expression was silenced by transfection with shRNAs. Cell proliferation and apoptosis were evaluated by MTT and flow cytometry respectively. The expression of genes in mRNA or protein levels was assessed by quantitative RT-PCR and western blotting. The interaction between proteins was predicted with the String and GCBI online softwares, and then confirmed by co-immunoprecipitation. Animal models were established by injecting nude mice with AVV8-HBV1.3 vector. RESULTS Bioinformatics analysis showed a significantly increase in DTNA expression in HBV-positive liver cirrhosis and HCC patients. HBV infection caused a significantly increase in DTNA expression in HCC cell lines HepAD38 and HepG2.2.15. DTNA knockdown suppressed proliferation and promoted apoptosis of HBV-infected HepAD38 and HepG2.2.15 cells. HBV induced elevated expression of fibrosis-related genes Collagen II and TGFβ1 in LO-2 cells, which were suppressed by DTNA knockdown. DTNA directly binded with STAT3 protein to promote STAT3 phosphorylation and TGFβ1 expression and repress P53 expression in HBV-infected HepAD38 and LO-2 cells. The DTNA/STAT3 axis was activated during HBV-induced fibrosis, cirrhosis and HCC development in mouse model. CONCLUSION DTNA binds with and further activates STAT3 to induce TGFβ1 expression and repress P53 expression, thus promoting HBV-induced liver fibrosis, cirrhosis and hepatocellular carcinoma progression.
Collapse
|
6
|
Liang R, Chen X, Chen L, Wan F, Chen K, Sun Y, Zhu X. STAT3 signaling in ovarian cancer: a potential therapeutic target. J Cancer 2020; 11:837-848. [PMID: 31949487 PMCID: PMC6959025 DOI: 10.7150/jca.35011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has shown that Signal Transducer and Activator of Transcription 3 (STAT3) is thought to be a promising target for cancer therapy as STAT3 is frequently overexpressed in a wide range of cancer cells as well as clinical specimens, promoting tumor progression. It is widely accepted that STAT3 regulates a variety of cellular processes, such as tumor cell growth, survival, invasion, cancer stem cell-like characteristic, angiogenesis and drug-resistance. In this review, we focus on the role of STAT3 in tumorigenesis in ovarian cancer and discuss the existing inhibitors of STAT3 signaling that can be promisingly developed as the strategies for ovarian cancer therapy.
Collapse
Affiliation(s)
- Renba Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Xishan Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Li Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Fangzhu Wan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Yongchu Sun
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| |
Collapse
|
7
|
Kaoud TS, Mohassab AM, Hassan HA, Yan C, Van Ravenstein SX, Abdelhamid D, Dalby KN, Abdel-Aziz M. NO-releasing STAT3 inhibitors suppress BRAF-mutant melanoma growth. Eur J Med Chem 2019; 186:111885. [PMID: 31784187 DOI: 10.1016/j.ejmech.2019.111885] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Constitutive activation of STAT3 can play a vital role in the development of melanoma. STAT3-targeted therapeutics are reported to show efficacy in melanomas harboring the BRAFV600E mutant and also in vemurafenib-resistant melanomas. We designed and synthesized a series of substituted nitric oxide (NO)-releasing quinolone-1,2,4-triazole/oxime hybrids, hypothesizing that the introduction of a STAT3 binding scaffold would augment their cytotoxicity. All the hybrids tested showed a comparable level of in vitro NO production. 7b and 7c exhibited direct binding to the STAT3-SH domain with IC50 of ∼ 0.5 μM. Also, they abrogated STAT3 tyrosine phosphorylation in several cancer cell lines, including the A375 melanoma cell line that carries the BRAFV600E mutation. At the same time, they did not affect the phosphorylation of upstream kinases or other STAT isoforms. 7c inhibited STAT3 nuclear translocation in mouse embryonic fibroblast while 7b and 7c inhibited STAT3 DNA-binding activity in the A375 cell line. Their anti-proliferating activity is attributed to their ability to trigger the production of reactive oxygen species and induce G1 cell cycle arrest in the A375 cell line. Interestingly, 7b and 7c showed robust cell growth suppression and apoptosis induction in two pairs of BRAF inhibitor-naïve (-S) and resistant (-R) melanoma cell lines containing a BRAF V600E mutation. Surprisingly, MEL1617-R cells that are known to be more resistance to MEK inhibition by GSK1120212 than MEL1617-S cells exhibit a similar response to 7b and 7c.
Collapse
Affiliation(s)
- Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aliaa M Mohassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Sabrina X Van Ravenstein
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
8
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
9
|
Zhu B, Zhao L, Liu Y, Jin Y, Feng J, Zhao F, Sun J, Geng R, Wei Y. Induction of phosphatase shatterproof 2 by evodiamine suppresses the proliferation and invasion of human cholangiocarcinoma. Int J Biochem Cell Biol 2019; 108:98-110. [DOI: 10.1016/j.biocel.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
|
10
|
Prognostic roles of signal transducers and activators of transcription family in human breast cancer. Biosci Rep 2018; 38:BSR20171175. [PMID: 29326301 PMCID: PMC6294627 DOI: 10.1042/bsr20171175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 01/23/2023] Open
Abstract
Signal transducers and activators of transcription (STAT) family are critical transcription factors, which have been proved as prognostic predictors for a number of cancers. However, the prognostic roles of STAT family in breast cancer patients remain in dispute. In the present study, we mined the ‘Kaplan–Meier plotter’ (KM plotter) online database to explore the prognostic roles of STAT family mRNA expression in breast cancer including overall survival (OS), progression-free survival (PFS), as well as post-progression survival (PPS). The results suggest high mRNA expression of all the individual STATs, except STAT1 and STAT2, are significantly associated with favorable OS in breast cancer patients; high STAT1 mRNA expression is significantly associated with worse RFS and all the other individual STATs, except STAT3, are significantly associated with better RFS in breast cancer patients; only high STAT5b mRNA expression is significantly related to better PPS in breast cancer patients. Additionally, we explored the prognostic values of individual STATs in other clinicopathological features, such as pathological grades, estrogen receptor (ER) status and so on. The results suggest, except STAT2 and STAT6, high mRNA expression of STATs is related to a favorable prognosis especially for high pathological grade; high STAT5 mRNA expression indicates a favorable prognosis no matter under ER positive or negative status; high STAT4 mRNA expression suggests a favorable prognosis under human epidermal growth factor receptor 2 (HER2) negative status. Our results indicate that individual STATs, except STAT1 and STAT2, may act as a favorable prognostic biomarker in breast cancer. Nevertheless, further investigations on a larger population are warranted.
Collapse
|
11
|
Ali R, Brown W, Purdy SC, Davisson VJ, Wendt MK. Biased signaling downstream of epidermal growth factor receptor regulates proliferative versus apoptotic response to ligand. Cell Death Dis 2018; 9:976. [PMID: 30250119 PMCID: PMC6155319 DOI: 10.1038/s41419-018-1034-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 01/05/2023]
Abstract
Inhibition of epidermal growth factor receptor (EGFR) signaling by small molecule kinase inhibitors and monoclonal antibodies has proven effective in the treatment of multiple cancers. In contrast, metastatic breast cancers (BC) derived from EGFR-expressing mammary tumors are inherently resistant to EGFR-targeted therapies. Mechanisms that contribute to this inherent resistance remain poorly defined. Here, we show that in contrast to primary tumors, ligand-mediated activation of EGFR in metastatic BC is dominated by STAT1 signaling. This change in downstream signaling leads to apoptosis and growth inhibition in response to epidermal growth factor (EGF) in metastatic BC cells. Mechanistically, these changes in downstream signaling result from an increase in the internalized pool of EGFR in metastatic cells, increasing physical access to the nuclear pool of STAT1. Along these lines, an EGFR mutant that is defective in endocytosis is unable to elicit STAT1 phosphorylation and apoptosis. Additionally, inhibition of endosomal signaling using an EGFR inhibitor linked to a nuclear localization signal specifically prevents EGF-induced STAT1 phosphorylation and cell death, without affecting EGFR:ERK1/2 signaling. Pharmacologic blockade of ERK1/2 signaling through the use of the allosteric MEK1/2 inhibitor, trametinib, dramatically biases downstream EGFR signaling toward a STAT1-dominated event, resulting in enhanced EGF-induced apoptosis in metastatic BC cells. Importantly, combined administration of trametinib and EGF also facilitated an apoptotic switch in EGFR-transformed primary tumor cells, but not normal mammary epithelial cells. These studies reveal a fundamental distinction for EGFR function in metastatic BC. Furthermore, the data demonstrate that pharmacological biasing of EGFR signaling toward STAT1 activation is capable of revealing the apoptotic function of this critical pathway.
Collapse
Affiliation(s)
- Remah Ali
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Wells Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephen Connor Purdy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.,Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Hasan M, Leak RK, Stratford RE, Zlotos DP, Witt‐Enderby PA. Drug conjugates-an emerging approach to treat breast cancer. Pharmacol Res Perspect 2018; 6:e00417. [PMID: 29983986 PMCID: PMC6032357 DOI: 10.1002/prp2.417] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer treatment using a single drug is associated with a high failure rate due, in part, to the heterogeneity of drug response within individuals, nonspecific target action, drug toxicity, and/or development of resistance. Use of dual-drug therapies, including drug conjugates, may help overcome some of these roadblocks by more selective targeting of the cancer cell and by acting at multiple drug targets rather than one. Drug-conjugate approaches include linking drugs to antibodies (antibody-drug conjugates), radionuclides (radioimmunoconjugates), nanoparticles (nanoparticle-drug conjugates), or to other drugs (drug-drug conjugates). Although all of these conjugates might be designed as effective treatments against breast cancer, the focus of this review will be on drug-drug conjugates because of the increase in versatility of these types of drugs with respect to mode of action at the level of the cancer cell either by creating a novel pharmacophore or by increasing the potency and/or efficacy of the drugs' effects at their respective molecular targets. The development, synthesis, and pharmacological characteristics of drug-drug conjugates will be discussed in the context of breast cancer with the hope of enhancing drug efficacy and reducing toxicities to improve patient quality of life.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | - Rehana K. Leak
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | | | - Darius P. Zlotos
- Department of Pharmaceutical ChemistryThe German University in CairoNew Cairo CityCairoEgypt
| | - Paula A. Witt‐Enderby
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
- University of Pittsburgh Cancer InstituteUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|