1
|
Chen X, Tian J, Wang S, Wang C, Zong L. Toward Bicalutamide Analogues with High Structural Diversity Using Catalytic Asymmetric Oxohydroxylation. J Org Chem 2024; 89:3907-3911. [PMID: 38427963 DOI: 10.1021/acs.joc.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
A catalytic enantioselective synthesis of bicalutamide derivatives with promising potentials in prostate cancer treatment has been disclosed. The key intermediates, α-hydroxy-β-keto esters, were efficiently constructed through cinchoninium-mediated asymmetric oxohydroxylation of easily accessible alkenes with potassium permanganate. Good yields and high levels of asymmetric induction are achieved. This method provides a new synthetic route to bicalutamide analogues with high structural diversity, which will beneficially support subsequent structure-activity relationship studies and boost prostate cancer drug development.
Collapse
Affiliation(s)
- Xinrui Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jinxin Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuangshuang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Yano T, Yamada T, Isida H, Ohashi N, Itoh T. 2-cyanopyridine derivatives enable N-terminal cysteine bioconjugation and peptide bond cleavage of glutathione under aqueous and mild conditions. RSC Adv 2024; 14:6542-6547. [PMID: 38390509 PMCID: PMC10882492 DOI: 10.1039/d4ra00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Inspired by the chemical reactivity of apalutamide, we have developed an efficient method for N-terminal cysteine bioconjugation with 2-cyanopyridine derivatives. Systematic investigations of various 2-cyanopyridines revealed that 2-cyanopyridines with electron-withdrawing groups react efficiently with cysteine under aqueous and mild conditions. Moreover, the highly reactive 2-cyanopyridines enable the peptide bond cleavage of glutathione. The utility of our method is demonstrated by its application to the cysteine-selective chemical modification of bioactive peptides.
Collapse
Affiliation(s)
- Tetsuya Yano
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| | - Takahiro Yamada
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| | - Hiroaki Isida
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| | - Nami Ohashi
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| | - Toshimasa Itoh
- Showa Pharmaceutical University Machida Tokyo 194-8543 Japan
| |
Collapse
|
3
|
López-Vidal MG, Lavandera I, Barra JL, Bisogno FR. Thiol-free multicomponent synthesis of non-racemic β-acyloxy thioethers from biocatalytically obtained chiral halohydrins. Org Biomol Chem 2024; 22:1420-1425. [PMID: 38263849 DOI: 10.1039/d3ob01737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A novel multicomponent chemoenzymatic strategy for the preparation of enantioenriched β-acyloxy thioethers has been developed. This robust methodology employs mild bases, air atmosphere, room temperature and avoids the use of foul-smelling thiols. Instead, potassium thioacetate is employed as a universal sulfur source. This chemoselective strategy tolerates aromatic and aliphatic components and diverse functional groups. The chirality is enzymatically defined by ADH-catalyzed bioreduction of α-haloketones delivering an enantioenriched halohydrin which is one of the three components, and the optical purity remains untouched in the final product. Semipreparative scale multicomponent reaction affords high yield of the products (up to 96%).
Collapse
Affiliation(s)
- Martín G López-Vidal
- Departamento de Química Orgánica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, INFIQC-CONICET-UNC, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Iván Lavandera
- Departamento de Química Orgánica e Inorgánica. Universidad de Oviedo, Avenida Julián Clavería 8 33006, Oviedo, Spain
| | - José L Barra
- Departamento de Química Biológica Ranwel Caputto, CIQUIBIC-CONICET-UNC. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fabricio R Bisogno
- Departamento de Química Orgánica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, INFIQC-CONICET-UNC, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| |
Collapse
|
4
|
Ng R, Zhang G, Li JJ. An update on the discovery and development of reversible covalent inhibitors. Med Chem Res 2023; 32:1039-1062. [PMID: 37305209 PMCID: PMC10148018 DOI: 10.1007/s00044-023-03065-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023]
Abstract
Small molecule drugs that covalently bind irreversibly to their target proteins have several advantages over conventional reversible inhibitors. They include increased duration of action, less-frequent drug dosing, reduced pharmacokinetic sensitivity, and the potential to target intractable shallow binding sites. Despite these advantages, the key challenges of irreversible covalent drugs are their potential for off-target toxicities and immunogenicity risks. Incorporating reversibility into covalent drugs would lead to less off-target toxicity by forming reversible adducts with off-target proteins and thus reducing the risk of idiosyncratic toxicities caused by the permanent modification of proteins, which leads to higher levels of potential haptens. Herein, we systematically review electrophilic warheads employed during the development of reversible covalent drugs. We hope the structural insights of electrophilic warheads would provide helpful information to medicinal chemists and aid in designing covalent drugs with better on-target selectivity and improved safety. Graphical Abstract
Collapse
Affiliation(s)
- Raymond Ng
- Olema Oncology, 512 2nd St., 4th Floor, San Francisco, 94107 CA USA
| | - Guiping Zhang
- Genhouse Bio, No.1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 PR China
| | - Jie Jack Li
- Genhouse Bio, No.1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 PR China
| |
Collapse
|
5
|
Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules 2022; 27:molecules27227728. [PMID: 36431829 PMCID: PMC9694382 DOI: 10.3390/molecules27227728] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cysteine is one of the least abundant amino acids in proteins of many organisms, which plays a crucial role in catalysis, signal transduction, and redox regulation of gene expression. The thiol group of cysteine possesses the ability to perform nucleophilic and redox-active functions that are not feasible for other natural amino acids. Cysteine is the most common covalent amino acid residue and has been shown to react with a variety of warheads, especially Michael receptors. These unique properties have led to widespread interest in this nucleophile, leading to the development of a variety of cysteine-targeting warheads with different chemical compositions. Herein, we summarized the various covalent warheads targeting cysteine residue and their application in drug development.
Collapse
|
6
|
Xu Q, Zhang Z, Huang C, Bao Q, Zhang R, Wu M, Xiao X, Han X, Li X, Zhou J. Development of novel androgen receptor antagonists based on the structure of darolutamide. Bioorg Chem 2022; 124:105829. [DOI: 10.1016/j.bioorg.2022.105829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
|
7
|
Li C, Huang H, Xiao F, Zhao B, Deng GJ. Rhodium(iii)-catalyzed successive C(sp2)–H and C(sp2)–C(sp2) bond activation of aryl oximes: synthetic and mechanistic studies. Org Chem Front 2022. [DOI: 10.1039/d1qo01669e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium(iii)-catalyzed redox-neutral reaction of aryl oximes and internal alkynes to generate novel N-(2-cyanoaryl) indanone imines.
Collapse
Affiliation(s)
- Cheng Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Bin Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
8
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|
9
|
He Y, Hwang DJ, Ponnusamy S, Thiyagarajan T, Mohler ML, Narayanan R, Miller DD. Pyrazol-1-yl-propanamides as SARD and Pan-Antagonists for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2020; 63:12642-12665. [PMID: 33095584 DOI: 10.1021/acs.jmedchem.0c00943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report herein the design, synthesis, and pharmacological characterization of a library of novel aryl pyrazol-1-yl-propanamides as selective androgen receptor degraders (SARDs) and pan-antagonists that exert broad-scope AR antagonism. Pharmacological evaluation demonstrated that introducing a pyrazole moiety as the B-ring structural element in the common A-ring-linkage-B-ring nonsteroidal antiandrogens' general pharmacophore allowed the development of a new scaffold of small molecules with unique SARD and pan-antagonist activities even compared to our recently published AF-1 binding SARDs such as UT-155 (9) and UT-34 (10). Novel B-ring pyrazoles exhibited potent AR antagonist activities, including promising distribution, metabolism, and pharmacokinetic properties, and broad-spectrum AR antagonist properties, including potent in vivo antitumor activity. 26a was able to induce an 80% tumor growth inhibition of xenografts derived from the enzalutamide-resistant (Enz-R) VCaP cell line. These results represent an advancement toward the development of novel AR antagonists for the treatment of Enz-R prostate cancer.
Collapse
Affiliation(s)
- Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Michael L Mohler
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
10
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|