1
|
Liu B, Li J, Ma X, Liu S, Yu Y. Tracing the influence of seasonal variation on bioaccumulation and trophodynamics of phthalate esters (PAEs) in marine food web: A case study in Bohai Bay, North China. MARINE POLLUTION BULLETIN 2025; 216:118051. [PMID: 40286415 DOI: 10.1016/j.marpolbul.2025.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The ubiquity of phthalate esters (PAEs) leads to public concerns about the safety of seafood consumption. However, their bioaccumulation and trophodynamics in marine food webs remain unclear, especially in different seasons. Herein, we collected 18 species (n = 135) in summer and 17 species (n = 146) in winter from Bohai Bay (BHB). ∑6PAEs in organisms in summer were significantly higher than those in winter. Di-(2-ethylhexyl) phthalate (DEHP) was the predominant PAE with a mean of 1112 ng·g-1 lipid weight (lw) and 375 ng·g-1 lw in summer and winter, respectively. The bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) of DEHP in summer were significantly higher than those in winter. A parabolic relationship was found between log Kow and log BAFlw or BSAFlw of PAEs. Food webs in two seasons were constructed based on the δ15N of each organism. Except for diethyl phthalate (DEP), other PAEs underwent biodilution and the biodilution of these PAEs was more obvious in summer compared to winter. Non-carcinogenic risks of 6 PAEs were negligible, but DEHP could pose incremental lifetime carcinogenic risks in some marine samples, especially in summer. This study provides insights into the seasonal variation of bioaccumulation and trophodynamics of PAEs.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China; Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China
| | - Junjie Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xinyu Ma
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Sixu Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Ding X, Chen R, Xu J, Hu J, Zhao Z, Zhang C, Zheng L, Cheng H, Weng Z, Wu L. Highly stable scalable production of porous graphene-polydopamine nanocomposites for drug molecule sensing. Talanta 2025; 282:126990. [PMID: 39406085 DOI: 10.1016/j.talanta.2024.126990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024]
Abstract
As atenolol overdosing can lead to severe health complications, the rapid detection of atenolol intake in point-of-care settings is highly desirable. The recent advancement of redox analytical methodologies has facilitated the efficacious quantification of these compounds for drug analysis, but their performance still presents challenges in practical applications. This study addresses these challenges by controlling the electropolymerization of polydopamine (PDA) on highly porous laser-induced graphene (LIG) electrodes with enhanced electrochemical redox activity for the detection of drug molecules such as atenolol, with minimized interference with the other active substances to induce variation of electrochemical behavior. The enhanced sensitivity of atenolol is attributed to the superhydrophilicity and increased number of active surface sites and -NH2 groups in the PDA polymer through a controlled polymerization process. Moreover, the simulation results further reveal that highly sensitive sensing of atenolol molecules relies on optimal adsorption of the atenolol molecule on dopamine or dopaminequinone structural units. The resulting sensors with high repeatability and reproducibility can achieve a low detection limit of 80 μM and a sensitivity of 0.020 ± 0.04 μA/μM within a linear range from 100 to 800 μM. The materials and surface chemistry in the electrode design based on highly porous LIG provide insights into the integration and application of future scalable and cost-effective electrochemical sensors for use in point-of-care or in-field applications.
Collapse
Affiliation(s)
- Xiaohong Ding
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Department of Engineering Science and Mechanics, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ruiqiang Chen
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Jie Xu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Jiapeng Hu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Zhixuan Zhao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Cheng Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Longhui Zheng
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Zixiang Weng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Synthesis and Validation of a Bioinspired Catechol-Functionalized Pt(IV) Prodrug for Preclinical Intranasal Glioblastoma Treatment. Cancers (Basel) 2022; 14:cancers14020410. [PMID: 35053575 PMCID: PMC8774041 DOI: 10.3390/cancers14020410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GB) is a type of brain cancer with a poor prognosis and few improvements in its treatment. One of the greatest difficulties in GB therapy lies in the fact that most of the drugs with high anticancer potential do not reach the brain and exert high therapeutic activity while minimizing side effects. To overcome these limitations, we focused on a catechol-based Pt(IV) prodrug (able to reverse cisplatin in a cellular environment) with the intention of repurposing Pt-based drugs as GB chemotherapeutic agents. Our in vitro results have corroborated the therapeutic effect of the synthesized complexes as comparable to cisplatin, and in vivo studies have demonstrated the potential of nose-to-brain delivery of this Pt(IV) prodrug for GB treatment. Abstract Glioblastoma is the most malignant and frequently occurring type of brain tumors in adults. Its treatment has been greatly hampered by the difficulty to achieve effective therapeutic concentration in the tumor sites due to its location and the blood–brain barrier. Intranasal administration has emerged as an alternative for drug delivery into the brain though mucopenetration, and rapid mucociliary clearance still remains an issue to be solved before its implementation. To address these issues, based on the intriguing properties of proteins secreted by mussels, polyphenol and catechol functionalization has already been used to promote mucopenetration, intranasal delivery and transport across the blood–brain barrier. Thus, herein we report the synthesis and study of complex 1, a Pt(IV) prodrug functionalized with catecholic moieties. This complex considerably augmented solubility in contrast to cisplatin and showed a comparable cytotoxic effect on cisplatin in HeLa, 1Br3G and GL261 cells. Furthermore, preclinical in vivo therapy using the intranasal administration route suggested that it can reach the brain and inhibit the growth of orthotopic GL261 glioblastoma. These results open new opportunities for catechol-bearing anticancer prodrugs in the treatment for brain tumors via intranasal administration.
Collapse
|
4
|
Sahu AK, Mishra AK. Interaction of Dopamine with Zwitterionic DMPC and Anionic DMPS Multilamellar Vesicle Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13430-13443. [PMID: 34732050 DOI: 10.1021/acs.langmuir.1c02184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dopamine (DA), a naturally occurring neurotransmitter, plays a crucial role in the function of the mammalian nervous system. DA-lipid-membrane interaction is inevitable during the neurotransmission process. In this report, we have studied the interaction of DA with anionic 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS), neutral (zwitterionic) 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and synaptic membrane-mimicking mixed DMPC/DMPS (3:1 molar ratio) model multilamellar vesicle (MLV) membranes. Differential scanning calorimetry (DSC) studies suggest a strong specific interaction of DA with the anionic DMPS membrane, a weak interaction with the zwitterionic DMPC membrane, and a moderate interaction with the mixed DMPC/DMPS (3:1) membrane. The intrinsic fluorescence of DA was used as a new approach to gain a molecular-level understanding of DA-lipid-membrane interaction. Toward this end, a detailed photophysical study of DA, including its steady-state fluorescence anisotropy and fluorescence lifetime, was undertaken for the first time. The partition coefficient, location, and distribution of DA in the DMPS and DMPC model membranes were studied by employing intrinsic fluorescence. The effect of DA on the phase transition of the model membranes was also examined using the intrinsic fluorescence of DA. Zeta potential studies suggest a strong electrostatic interaction of DA with the anionic DMPS membrane and a nonspecific, relatively weak interaction of DA with the zwitterionic DMPC membrane. In addition, we observed cholesterol-induced DA expulsion from both DMPS and DMPC membranes. We believe that this work will provide a more in-depth understanding of DA-membrane interaction at a molecular level.
Collapse
Affiliation(s)
- Anand Kumar Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
6
|
Moroz LL, Romanova DY. Selective Advantages of Synapses in Evolution. Front Cell Dev Biol 2021; 9:726563. [PMID: 34490275 PMCID: PMC8417881 DOI: 10.3389/fcell.2021.726563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Lab of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Bompard J, Maniti O, Aboukhachfe R, Ausserre D, Girard-Egrot A. BALM: Watching the Formation of Tethered Bilayer Lipid Membranes with Submicron Lateral Resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9457-9471. [PMID: 34324820 DOI: 10.1021/acs.langmuir.1c01184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tethered bilayer lipid membranes (tBLMs) are artificial membranes largely used for the in situ study of biological membranes and membrane-associated proteins. To date, the formation of these membranes was essentially monitored by surface averaging techniques like surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D), which cannot provide both local and real-time information in a single approach. Here, we report an original application of backside absorbing layer microscopy (BALM), a novel white-light wide-field optical microscopy, to study tBLMs. Thanks to the combination of sensitivity and resolution, BALM not only allowed the real-time quantitative monitoring of tBLM formation but also enabled the high-resolution visualization of local fluxes and matter exchanges taking place at each step of the process. Quantitative BALM measurements of the final layer thickness, reproduced in parallel with SPR, were consistent with the achievement of a continuous lipid bilayer. This finding was confirmed by BALM imaging, which additionally revealed the heterogeneity of the bilayer during its formation. While established real-time techniques, like SPR or QCM-D, view the surface as homogeneous, BALM showed the presence of surface patterns appearing in the first step of the tBLM formation process and governing subsequent matter adsorption or desorption steps. Finally, matter fluxes persisting even after rinsing at the end of the tBLM formation demonstrated the lasting presence of dispersed vesicular pockets with laterally fluctuating positions over the final single and continuous lipid bilayer. These new mechanistic insights into the tBLM formation process demonstrate the great potential of BALM in the study of complex biological systems.
Collapse
Affiliation(s)
- J Bompard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - O Maniti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - R Aboukhachfe
- Lebanese University, Faculty of Technology, Hisbe Street, Saida, Lebanon
| | - D Ausserre
- Institut Molecules & Matériaux du Mans, IMMM CNRS UMR 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France
| | - A Girard-Egrot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Belkilani M, Shokouhi M, Farre C, Chevalier Y, Minot S, Bessueille F, Abdelghani A, Jaffrezic-Renault N, Chaix C. Surface Plasmon Resonance Monitoring of Mono-Rhamnolipid Interaction with Phospholipid-Based Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7975-7985. [PMID: 34170134 DOI: 10.1021/acs.langmuir.1c00846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 μg mL-1.
Collapse
Affiliation(s)
- Meryem Belkilani
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
- ENSIT, University of Tunis, Avenue Taha Hussein, Montfleury, 1008 Tunis, Tunisia
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Maryam Shokouhi
- Department of chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Carole Farre
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Yves Chevalier
- CNRS, Claude Bernard Lyon1 University, University of Lyon, LAGEPP, 43 Bd 11 Novembre, F-69622 Villeurbanne, France
| | - Sylvain Minot
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - François Bessueille
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adnane Abdelghani
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Nicole Jaffrezic-Renault
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Chaix
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
9
|
Su Y, DePasquale M, Liao G, Buchler I, Zhang G, Byers S, Carr GV, Barrow J, Wei H. Membrane bound catechol-O-methytransferase is the dominant isoform for dopamine metabolism in PC12 cells and rat brain. Eur J Pharmacol 2021; 896:173909. [PMID: 33503461 DOI: 10.1016/j.ejphar.2021.173909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Impaired dopamine activity in the dorsolateral prefrontal cortex (DLPFC) is thought to contribute to cognitive deficits in diseases such as schizophrenia, attention deficit hyperactivity disorder (ADHD) and traumatic brain injury. Catechol-O-methyltransfease (COMT) metabolizes dopamine and is an important regulator of dopamine signaling in the DLPFC. In mammalian species, two isoforms of COMT protein, membrane-bound COMT (MB-COMT) and soluble COMT (S-COMT), are encoded by one COMT gene and expressed widely. While S-COMT is thought to play a dominant role in the peripheral tissues, MB-COMT is suggested to have a greater role in dopamine metabolism in the brain. However, whether a selective inhibitor for MB-COMT may effectively block dopamine metabolism remains unknown. We generated a knockout of MB-COMT in PC12 cells using CRISPR-cas9 technology to evaluate the effect of both MB and S-COMT on dopamine metabolism. Deletion of MB-COMT in PC12 cells significantly decreased homovanillic acid (HVA), completely depleted 3-methyoxytyramine (3-MT), and significantly increased 3,4-dihydroxyphenylacetic acid (DOPAC) levels. Comparison of the effect of a MB-COMT selective inhibitor LI-1141 on dopamine metabolism in wild type and MB-COMT knockout PC12 cells allowed us to confirm the selectivity of LI-1141 with respect to MB-COMT in cells. Under conditions in which LI-1141 was shown to inhibit only MB-COMT but not S-COMT, it effectively changed dopamine metabolites similar to the effect induced by tolcapone, a non-selective COMT inhibitor, suggesting that selective inhibition of MB-COMT will be effective in blocking dopamine metabolism, providing an attractive therapeutic approach in improving cognition for patients.
Collapse
Affiliation(s)
- Yupin Su
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | | | - Gangling Liao
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Ingrid Buchler
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Gongliang Zhang
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Spencer Byers
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Gregory V Carr
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA; Department of Pharmacology, John Hopkins University, Baltimore, MD, 21205, USA
| | - James Barrow
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA; Department of Pharmacology, John Hopkins University, Baltimore, MD, 21205, USA
| | - Huijun Wei
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA; Department of Pharmacology, John Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Bwambok DK, Siraj N, Macchi S, Larm NE, Baker GA, Pérez RL, Ayala CE, Walgama C, Pollard D, Rodriguez JD, Banerjee S, Elzey B, Warner IM, Fakayode SO. QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6982. [PMID: 33297345 PMCID: PMC7730680 DOI: 10.3390/s20236982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022]
Abstract
Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products.
Collapse
Affiliation(s)
- David K. Bwambok
- Chemistry and Biochemistry, California State University San Marcos, 333 S. Twin Oaks Valley Rd, San Marcos, CA 92096, USA;
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Nathaniel E. Larm
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Caitlan E. Ayala
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Charuksha Walgama
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - David Pollard
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr Dr, Winston-Salem, NC 27013, USA;
| | - Jason D. Rodriguez
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, US Food and Drug Administration, 645 S. Newstead Ave., St. Louis, MO 63110, USA;
| | - Souvik Banerjee
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - Brianda Elzey
- Science, Engineering, and Technology Department, Howard Community College, 10901 Little Patuxent Pkwy, Columbia, MD 21044, USA;
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Sayo O. Fakayode
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| |
Collapse
|
11
|
Gandhi M, Rajagopal D, Senthil Kumar A. Facile Electrochemical Demethylation of 2-Methoxyphenol to Surface-Confined Catechol on the MWCNT and Its Efficient Electrocatalytic Hydrazine Oxidation and Sensing Applications. ACS OMEGA 2020; 5:16208-16219. [PMID: 32656443 PMCID: PMC7346242 DOI: 10.1021/acsomega.0c01846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 06/01/2023]
Abstract
Owing to its biological significance, preparation of stable surface-confined catechol (CA) is a long-standing interest in electrochemistry and surface chemistry. In this connection, various chemical approaches such as covalent immobilization (using amine- and carboxylate-functionalized CA, diazotization-based coupling, and Michael addition reaction), self-assembled monolayer on gold (thiol-functionalized CA is assembled on the gold surface), CA adsorption on the ad-layer of a defect-free single-crystal Pt surface, π-π bonding, CA pendant metal complexes, and CA-functionalized polymer-modified electrodes have been reported in the literature. In general, these conventional methods are involved with a series of time-consuming synthetic procedures. Indeed, the preparation of a surface-fouling-free surface-confined system is a challenging task. Herein, we introduce a new and facile approach based on electrochemical demethylation of 2-methoxyphenol as a precursor on the graphitic surface (MWCNT) at a bias potential, 0.5 V vs Ag/AgCl in neutral pH solution. Such an electrochemical performance resulted in the development of a stable and well-defined redox peak at E o' = 0.15 (A2/C2) V vs Ag/AgCl within 10 min of preparation time in pH 7 phosphate buffer solution. Calculated surface excess (16.65 × 10-9 mol cm-2) is about 10-1000 times higher than the values reported with other preparation methods. The product (catechol) formed on the modified electrode was confirmed by collective electrochemical and physicochemical characterizations such as potential segment analysis, TEM, Raman, IR, UV-vis, GC-MS, and NMR spectroscopic techniques, and thin-layer chromatographic studies. The electrocatalytic efficiency of the surface-confined CA system was demonstrated by studying hydrazine oxidation and sensing reactions in a neutral pH solution. This new system is found to be tolerant to various interfering biochemicals such as uric acid, xanthine, hypoxanthine, glucose, nitrate, hydrogen peroxide, ascorbic acid, Cu2+, and Fe2+. Since the approach is simple, rapid, and reproducible, a variety of surface-confined CA systems can be prepared.
Collapse
Affiliation(s)
- Mansi Gandhi
- Nano
and Bioelectrochemistry Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology University, Vellore 632014, India
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore 632014, India
| | - Desikan Rajagopal
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore 632014, India
| | - Annamalai Senthil Kumar
- Nano
and Bioelectrochemistry Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology University, Vellore 632014, India
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore 632014, India
- Carbon
Dioxide Research and Green Technology Centre, Vellore Institute of Technology University, Vellore Tamil Nadu 632014, India
| |
Collapse
|