1
|
Fantini J, Azzaz F, Di Scala C, Aulas A, Chahinian H, Yahi N. Conformationally adaptive therapeutic peptides for diseases caused by intrinsically disordered proteins (IDPs). New paradigm for drug discovery: Target the target, not the arrow. Pharmacol Ther 2025; 267:108797. [PMID: 39828029 DOI: 10.1016/j.pharmthera.2025.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The traditional model of protein structure determined by the amino acid sequence is today seriously challenged by the fact that approximately half of the human proteome is made up of proteins that do not have a stable 3D structure, either partially or in totality. These proteins, called intrinsically disordered proteins (IDPs), are involved in numerous physiological functions and are associated with severe pathologies, e.g. Alzheimer, Parkinson, Creutzfeldt-Jakob, amyotrophic lateral sclerosis (ALS), and type 2 diabetes. Targeting these proteins is challenging for two reasons: i) we need to preserve their physiological functions, and ii) drug design by molecular docking is not possible due to the lack of reliable starting conditions. Faced with this challenge, the solutions proposed by artificial intelligence (AI) such as AlphaFold are clearly unsuitable. Instead, we suggest an innovative approach consisting of mimicking, in short synthetic peptides, the conformational flexibility of IDPs. These peptides, which we call adaptive peptides, are derived from the domains of IDPs that become structured after interacting with a ligand. Adaptive peptides are designed with the aim of selectively antagonizing the harmful effects of IDPs, without targeting them directly but through selected ligands, without affecting their physiological properties. This "target the target, not the arrow" strategy is promised to open a new route to drug discovery for currently undruggable proteins.
Collapse
Affiliation(s)
- Jacques Fantini
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France.
| | - Fodil Azzaz
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Anaïs Aulas
- Neuroscience Center-HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Henri Chahinian
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| | - Nouara Yahi
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| |
Collapse
|
2
|
Babaei E, Küçükkılınç TT, Jalili-Baleh L, Nadri H, Öz E, Forootanfar H, Hosseinzadeh E, Akbari T, Ardestani MS, Firoozpour L, Foroumadi A, Sharifzadeh M, Mirjalili BBF, Khoobi M. Novel Coumarin–Pyridine Hybrids as Potent Multi-Target Directed Ligands Aiming at Symptoms of Alzheimer’s Disease. Front Chem 2022; 10:895483. [PMID: 35844650 PMCID: PMC9280334 DOI: 10.3389/fchem.2022.895483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this research, a series of coumarin-based scaffolds linked to pyridine derivatives via a flexible aliphatic linkage were synthesized and assessed as multifunctional anti-AD agents. All the compounds showed acceptable acetylcholinesterase (AChE) inhibition activity in the nanomolar range (IC50 = 2–144 nM) and remarkable butyrylcholinesterase (BuChE) inhibition property (IC50 = 9–123 nM) compared to donepezil as the standard drug (IC50 = 14 and 275 nM, respectively). Compound 3f as the best AChE inhibitor (IC50 = 2 nM) showed acceptable BuChE inhibition activity (IC50 = 24 nM), 100 times more active than the standard drug. Compound 3f could also significantly protect PC12 and SH-SY5Y cells against H2O2-induced cell death and amyloid toxicity, respectively, superior to the standard drugs. It could interestingly reduce β-amyloid self and AChE-induced aggregation, more potent than the standard drug. All the results suggest that compound 3f could be considered as a promising multi-target-directed ligand (MTDL) against AD.
Collapse
Affiliation(s)
- Elaheh Babaei
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | - Leili Jalili-Baleh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esin Öz
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Hosseinzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| |
Collapse
|
3
|
Futamura A, Hieda S, Mori Y, Kasuga K, Sugimoto A, Kasai H, Kuroda T, Yano S, Tsuji M, Ikeuchi T, Irie K, Ono K. Toxic Amyloid-β42 Conformer May Accelerate the Onset of Alzheimer's Disease in the Preclinical Stage. J Alzheimers Dis 2021; 80:639-646. [PMID: 33579852 DOI: 10.3233/jad-201407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Toxic amyloid-β protein (Aβ) conformers play an important role in the progression of Alzheimer's disease (AD). The ratio of toxic conformer to total Aβ42 in cerebrospinal fluid (CSF) was significantly high in AD and mild cognitive impairment (MCI) due to AD using an enzyme-linked immunosorbent assay kit with a 24B3 antibody. OBJECTIVE We compared the toxic Aβ42, conformer at different stages of AD to identify its contribution to AD pathogenesis. METHODS We compared 5 patients with preclinical AD, 11 patients with MCI due to AD, 21 patients with AD, and 5 healthy controls to measure CSF levels of total Aβ42, total tau, tau phosphorylated at threonine 181 (p-tau), and toxic Aβ conformers. All were classified using the Clinical Dementia Rating. Cognitive function was assessed using the Japanese version of the Mini-Mental State Examination (MMSE-J). RESULTS Toxic Aβ conformer level was insignificant between groups, but its ratio to Aβ42 was significantly higher in AD than in preclinical AD (p < 0.05). Toxic Aβ42 conformer correlated positively with p-tau (r = 0.67, p < 0.01) and p-tau correlated negatively with MMSE-J (r = -0.38, p < 0.05). CONCLUSION Toxic Aβ conformer triggers tau accumulation leading to neuronal impairment in AD pathogenesis.
Collapse
Affiliation(s)
- Akinori Futamura
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Sotaro Hieda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yukiko Mori
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Azusa Sugimoto
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Hideyo Kasai
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Takeshi Kuroda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Satoshi Yano
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|