1
|
Pandey P, Zagzoog A, Laprairie RB, Neal WM, Doerksen RJ, Chittiboyina AG. Determination of the Negative Allosteric Binding Site of Cannabidiol at the CB1 Receptor: A Combined Computational and Site-Directed Mutagenesis Study. ACS Chem Neurosci 2025; 16:311-328. [PMID: 39812521 DOI: 10.1021/acschemneuro.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs. An X-ray crystal structure revealed a binding site for the NAM, ORG27569, at an extrahelical location within the inner leaflet of the membrane. In contrast, multiple computational studies have previously proposed several potential allosteric binding sites for CBD within the CB1R structure. Given that a prior structural study suggested CBD might occupy the same site as ORG27569, we conducted a comprehensive investigation of potential CBD binding sites using molecular docking, molecular dynamics (MD) simulations, metadynamics (MTD) simulations, binding free-energy calculations, and in vitro mutagenesis experiments. Molecular docking, MD, and MTD simulations results, along with binding free-energy calculations, suggest that CBD may potentially bind to either the same extrahelical site as ORG27569 or a previously unidentified intracellular site located near TMHs 2, 6, and 7 and helix 8. This intracellular site is consistent with allosteric binding sites observed in other G protein-coupled receptors (GPCRs). To establish the most favorable allosteric site for CBD, we conducted site-directed mutagenesis of key residues at each site. Mutations at S4018.47ΔA and D4038.49ΔA augmented the binding of [3H]-SR141716A, suggesting these residues play critical roles in CBD binding. As a result, the combined computational and mutagenesis results identified a binding site for CBD between TMHs 2, 6, and 7 and helix 8, involving residues Y1532.40, I1562.43, M3376.29, L3416.33, S4018.47, and D4038.49. These findings provide valuable insights into how CBD binds to CB1R, thereby informing the rational design of new, selective, and potent NAMs. Moreover, the elucidation of this previously unexplored allosteric site might explain the polypharmacology of CBD due to structural conservation among Class A GPCRs.
Collapse
Affiliation(s)
- Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - William M Neal
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
3
|
Negin B, Jander G. Convergent and divergent evolution of plant chemical defenses. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102368. [PMID: 37087925 DOI: 10.1016/j.pbi.2023.102368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
The majority of the several hundred thousand specialized metabolites produced by plants function in defense against insects and other herbivores. Despite this diversity, identical metabolites or structurally distinct metabolites hitting the same targets in herbivorous animals have evolved repeatedly. This convergent evolution may reflect the constraints of plant primary metabolism in providing metabolic precursors, as well as the limited number of readily accessible targets in animals. These restrictions may make it uncommon for plants to develop completely novel toxic and deterrent metabolites, despite the ongoing evolution of resistance mechanisms in insect herbivores. Defensive compounds that are unique to individual genera or species often have long biosynthetic pathways that may complicate the repeated evolution of these metabolites in different plant species.
Collapse
Affiliation(s)
- Boaz Negin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|