1
|
Xiaolin N, Yao F, Pan M. The regulatory effect of blood group on ferritin levels in aging: a retrospective study. PeerJ 2025; 13:e19281. [PMID: 40247839 PMCID: PMC12005183 DOI: 10.7717/peerj.19281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Background Ferritin plays a pivotal role in the ageing process. Previous studies have identified statistically significant differences in ferritin levels among various ABO blood groups. However, the interaction between the ABO blood group and ferritin levels during senescence remains underexplored. Methods This research was conducted as a retrospective study involving a cohort of 3,843 individuals aged 40 and over who underwent blood type and ferritin testing at Beijing Zhongguancun Hospital. Assumption testing is employed to assess the normal distribution of continuous variables in the context of regression analysis. Spearman correlation analysis was employed to examine the relationship between the non-normally distributed biochemical indicators and ferritin levels. Age was considered the independent variable, while gender and biochemical indicators related to ferritin served as control variables. Blood type was analyzed as a moderating factor to evaluate its impact on the relationship between age and ferritin levels. Results Our findings revealed a negative correlation between ferritin and age (ρ = - 0.099, p < 0.001). Significant differences in ferritin levels were observed between genders (p = 0.005) and blood groups (p < 0.001). The influence of age on ferritin levels varied across different blood groups, particularly in individuals with blood types A (p = 0.003, β = - 0.072) and B (p < 0.001, β = - 0.110), where the negative association between age and ferritin was more pronounced. Conclusion ABO blood type may influence ferritin levels as individuals age. Notably, in individuals with blood types A and B, the inverse relationship between age and ferritin levels was particularly significant among middle-aged and elderly individuals. These findings suggested the potential benefit of targeted iron supplementation for this population.
Collapse
Affiliation(s)
- Ni Xiaolin
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
2
|
de Jesus JR, Galazzi RM, Lopes Júnior CA, Arruda MAZ. Trace element homeostasis in the neurological system after SARS-CoV-2 infection: Insight into potential biochemical mechanisms. J Trace Elem Med Biol 2022; 71:126964. [PMID: 35240553 PMCID: PMC8881805 DOI: 10.1016/j.jtemb.2022.126964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several studies have suggested that COVID-19 is a systemic disease that can affect several organs, including the brain. In the brain, specifically, viral infection can cause dyshomeostasis of some trace elements that promote complex biochemical reactions in specialized neurological functions. OBJECTIVE Understand the neurovirulence of SARS-CoV-2 and the relationship between trace elements and neurological disorders after infection, and provide new insights on the drug development for the treatment of SARS-CoV-2 infections. METHODS The main databases were used to search studies published up September 2021, focusing on the role of trace elements during viral infection and on the correct functioning of the brain. RESULTS The imbalance of important trace elements can accelerate SARS-CoV-2 neurovirulence and increase the neurotoxicity since many neurological processes can be associated with the homeostasis of metal and metalloproteins. Some studies involving animals and humans have suggested the synapse as a vulnerable region of the brain to neurological disorders after viral infection. Considering the combined evidence, some mechanisms have been suggested to understand the relationship between neurological disorders and imbalance of trace elements in the brain after viral infection. CONCLUSION Trace elements play important roles in viral infections, such as helping to activate immune cells, produce antibodies, and inhibit virus replication. However, the relationship between trace elements and virus infections is complex since the specific functions of several elements remain largely undefined. Therefore, there is still a lot to be explored to understand the biochemical mechanisms involved between trace elements and viral infections, especially in the brain.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Brazil; Chemistry Department, Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil.
| | - Rodrigo Moretto Galazzi
- Analytical Instrumentation Division, Analytik Jena GmbH, an Endress & Hauser Company, São Paulo, SP 04029-901, Brazil.
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Brazil.
| |
Collapse
|
3
|
Marçalo R, Neto S, Pinheiro M, Rodrigues AJ, Sousa N, Santos MAS, Simão P, Valente C, Andrade L, Marques A, Moura GR. Evaluation of the genetic risk for COVID-19 outcomes in COPD and differences among worldwide populations. PLoS One 2022; 17:e0264009. [PMID: 35196333 PMCID: PMC8865687 DOI: 10.1371/journal.pone.0264009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Populations seem to respond differently to the global pandemic of severe acute respiratory syndrome coronavirus 2. Recent studies show individual variability in both susceptibility and clinical response to COVID-19 infection. People with chronic obstructive pulmonary disease (COPD) constitute one of COVID-19 risk groups, being already associated with a poor prognosis upon infection. This study aims contributing to unveil the underlying reasons for such prognosis in people with COPD and the variability in the response observed across worldwide populations, by looking at the genetic background as a possible answer to COVID-19 infection response heterogeneity. METHODS SNPs already associated with susceptibility to COVID-19 infection (rs286914 and rs12329760) and severe COVID-19 with respiratory failure (rs657152 and rs11385942) were assessed and their allelic frequencies used to calculate the probability of having multiple risk alleles. This was performed on a Portuguese case-control COPD cohort, previously clinically characterized and genotyped from saliva samples, and also on worldwide populations (European, Spanish, Italian, African, American and Asian), using publicly available frequencies data. A polygenic risk analysis was also conducted on the Portuguese COPD cohort for the two mentioned phenotypes, and also for hospitalization and survival to COVID-19 infection. FINDINGS No differences in genetic risk for COVID-19 susceptibility, hospitalization, severity or survival were found between people with COPD and the control group (all p-values > 0.01), either considering risk alleles individually, allelic combinations or polygenic risk scores. All populations, even those with European ancestry (Portuguese, Spanish and Italian), showed significant differences from the European population in genetic risk for both COVID-19 susceptibility and severity (all p-values < 0.0001). CONCLUSION Our results indicate a low genetic contribution for COVID-19 infection predisposition or worse outcomes observed in people with COPD. Also, our study unveiled a high genetic heterogeneity across major world populations for the same alleles, even within European sub-populations, demonstrating the need to build a higher resolution European genetic map, so that differences in the distribution of relevant alleles can be easily accessed and used to better manage diseases, ultimately, safeguarding populations with higher genetic predisposition to such diseases.
Collapse
Affiliation(s)
- Rui Marçalo
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
- Lab3R-Respiratory Research and Rehabilitation, School for Health Sciences (ESSUA) and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Sonya Neto
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| | - Miguel Pinheiro
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho–Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho–Braga, Portugal
| | - Manuel A. S. Santos
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| | - Paula Simão
- Pulmonology Department, Unidade Local de Saúde de Matosinhos—Porto, Porto, Portugal
| | - Carla Valente
- Pulmonology Department, Centro Hospitalar do Baixo Vouga–Aveiro, Aveiro, Portugal
| | - Lília Andrade
- Pulmonology Department, Centro Hospitalar do Baixo Vouga–Aveiro, Aveiro, Portugal
| | - Alda Marques
- Lab3R-Respiratory Research and Rehabilitation, School for Health Sciences (ESSUA) and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Kilercik M, Ucal Y, Serdar M, Serteser M, Ozpinar A, Schweigert FJ. Zinc protoporphyrin levels in COVID-19 are indicative of iron deficiency and potential predictor of disease severity. PLoS One 2022; 17:e0262487. [PMID: 35113876 PMCID: PMC8812978 DOI: 10.1371/journal.pone.0262487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease (COVID-19) has a severe impact on all aspects of patient care. Among the numerous biomarkers of potential validity for diagnostic and clinical management of COVID-19 are biomarkers at the interface of iron metabolism and inflammation. Methods The follow-up study included 54 hospitalized patients with laboratory-confirmed COVID-19 with a moderate and severe/critical form of the disease. Iron deficiency specific biomarkers such as iron, ferritin, transferrin receptor, hepcidin, and zinc protoporphyrin (ZnPP) as well as relevant markers of inflammation were evaluated twice: in the first five days when the patient was admitted to the hospital and during five to 15 days; and their validity to diagnose iron deficiency was further assessed. The regression and Receiver Operating Characteristics (ROC) analyses were performed to evaluate the prognosis and determine the probability for predicting the severity of the disease in the first five days of COVID-19. Results Based on hemoglobin values, anemia was observed in 21 of 54 patients. Of all iron deficiency anemia-related markers, only ZnPP was significantly elevated (P<0.001) in the anemic group. When patients were grouped according to the severity of disease, slight differences in hemoglobin or other anemia-related parameters could be observed. However, the levels of ZnPP were significantly increased in the severely ill group of patients. The ratio of ZnPP to lymphocyte count (ZnPP/L) had a discrimination power stronger than the neutrophil to lymphocyte count ratio (N/L) to determine disease severity. Additionally, only two markers were independently associated with the severity of COVID-19 in logistic regression analysis; D-dimer (OR (5.606)(95% CI 1.019–30.867)) and ZnPP/L ratio (OR (74.313) (95% CI 1.081–5108.103)). Conclusions For the first time ZnPP in COVID-19 patients were reported in this study. Among all iron-related markers tested, ZnPP was the only one that was associated with anemia as based on hemoglobin. The increase in ZnPP might indicate that the underlying cause of anemia in COVID-19 patients is not only due to the inflammation but also of nutritional origin. Additionally, the ZnPP/L ratio might be a valid prognostic marker for the severity of COVID-19.
Collapse
Affiliation(s)
- Meltem Kilercik
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Medical Biochemistry, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Muhittin Serdar
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Medical Biochemistry, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- * E-mail: (FJS); (AO)
| | - Florian J. Schweigert
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- * E-mail: (FJS); (AO)
| |
Collapse
|
5
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
6
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
7
|
Ni YQ, Zeng HH, Song XW, Zheng J, Wu HQ, Liu CT, Zhang Y. Potential metal-related strategies for prevention and treatment of COVID-19. RARE METALS 2022; 41:1129-1141. [PMID: 35068851 PMCID: PMC8761834 DOI: 10.1007/s12598-021-01894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 05/07/2023]
Abstract
Abstract The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed severe threats to human health, public safety, and the global economy. Metal nutrient elements can directly or indirectly take part in human immune responses, and metal-related drugs have served as antiviral drugs and/or enzyme inhibitors for many years, providing potential solutions to the prevention and treatment of COVID-19. Metal-based drugs are currently under a variety of chemical structures and exhibit wide-range bioactivities, demonstrating irreplaceable advantages in pharmacology. This review is an intention to summarize recent progress in the prevention and treatment strategies against COVID-19 from the perspective of metal pharmacology. The current and potential utilization of metal-based drugs is briefly introduced. Specifically, metallohydrogels that have been shown to present superior antiviral activities are stressed in the paper as potential drugs for the treatment of COVID-19. Graphic abstract
Collapse
Affiliation(s)
- Ya-Qiong Ni
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Hui-Hui Zeng
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Xian-Wen Song
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Hui-Qiong Wu
- Hanshan Normal University, Chaozhou, 521041 China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071 China
| | - Chun-Tai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002 China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| |
Collapse
|
8
|
The Usefulness of X-ray Diffraction and Thermal Analysis to Study Dietary Supplements Containing Iron. Molecules 2021; 27:molecules27010197. [PMID: 35011434 PMCID: PMC8746380 DOI: 10.3390/molecules27010197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer’s claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form.
Collapse
|