1
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
2
|
Lin SXN, Ahring PK, Keramidas A, Liao VWY, Møller RS, Chebib M, Absalom NL. Correlations of receptor desensitization of gain-of-function GABRB3 variants with clinical severity. Brain 2024; 147:224-239. [PMID: 37647766 PMCID: PMC10766243 DOI: 10.1093/brain/awad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the β3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.
Collapse
Affiliation(s)
- Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Member of ERN, EpiCare, Danish Epilepsy Centre, Dianalund DK-4293, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5230, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan L Absalom
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Kłopotowski K, Michałowski MA, Gos M, Mosiądz D, Czyżewska MM, Mozrzymas JW. Mutation of valine 53 at the interface between extracellular and transmembrane domains of the β 2 principal subunit affects the GABA A receptor gating. Eur J Pharmacol 2023; 947:175664. [PMID: 36934960 DOI: 10.1016/j.ejphar.2023.175664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
GABAA receptors (gamma-aminobutyric acid type A receptors) are pentameric ligand-gated ion channels mediating inhibition in adult mammalian brains. Their static structure has been intensely studied in the past years but the underlying molecular activatory mechanisms remain obscure. The interface between extracellular and transmembrane domains has been recognized as a key player in the receptor gating. However, the role of the valine 53 in the β1-β2 loop of the principal subunit (β2) remains controversial showing differences compared to homologous residues in some cys-loop counterparts such as nAChR. To address the role of the β2V53 residue in the α1β2γ2L receptor gating, we performed high resolution macroscopic and single-channel recordings. To explore underlying molecular mechanisms a variety of substituting amino acids were investigated: Glutamate and Lysine (different electric charge), Alanine (aliphatic, larger than Valine) and Histidine (same residue as in homologous α1H55). We report that mutation of the β2V53 residue results in alterations of nearly all gating transitions including opening/closing, preactivation and desensitization. A dramatic gating impairment was observed for glutamate substitution (β2V53E) but β2V53K mutation had a weak effect. The impact of histidine substitution was also small while β2V53A markedly affected the receptor but to a smaller extent than β2V53E. Considering available structures in desensitized and bicuculline blocked shut states we propose that strongly detrimental effect of β2V53E mutation on receptor activation results from electrostatic interaction between the glutamate and β2K274 on the loop M2-M3 which stabilizes the receptor in the shut state. We conclude that β2V53 is strongly involved in mechanisms underlying the receptor gating.
Collapse
Affiliation(s)
- Karol Kłopotowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland.
| | - Michał A Michałowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Michalina Gos
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland
| | - Daniela Mosiądz
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Marta M Czyżewska
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Jerzy W Mozrzymas
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland.
| |
Collapse
|
4
|
Hernandez CC, Shen Y, Hu N, Shen W, Narayanan V, Ramsey K, He W, Zou L, Macdonald RL. GABRG2 Variants Associated with Febrile Seizures. Biomolecules 2023; 13:414. [PMID: 36979350 PMCID: PMC10046037 DOI: 10.3390/biom13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Febrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy. We found that among the GABAA receptor subunit (GABR) genes, most variants associated with FS are harbored in the γ2 subunit (GABRG2). Here, we characterized the effects of eight variants in the GABAA receptor γ2 subunit on receptor biogenesis and channel function. Two-thirds of the GABRG2 variants followed the expected autosomal dominant inheritance in FS and occurred as missense and nonsense variants. The remaining one-third appeared as de novo in the affected probands and occurred only as missense variants. The loss of GABAA receptor function and dominant negative effect on GABAA receptor biogenesis likely caused the FS phenotype. In general, variants in the GABRG2 result in a broad spectrum of phenotypic severity, ranging from asymptomatic, FS, genetic epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome individuals. The data presented here support the link between FS, epilepsy, and GABRG2 variants, shedding light on the relationship between the variant topological occurrence and disease severity.
Collapse
Affiliation(s)
- Ciria C. Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanwen Shen
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Wen He
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Liping Zou
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Kaczor PT, Michałowski MA, Mozrzymas JW. α 1 Proline 277 Residues Regulate GABA AR Gating through M2-M3 Loop Interaction in the Interface Region. ACS Chem Neurosci 2022; 13:3044-3056. [PMID: 36219829 PMCID: PMC9634794 DOI: 10.1021/acschemneuro.2c00401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cys-loop receptors are a superfamily of transmembrane, pentameric receptors that play a crucial role in mammalian CNS signaling. Physiological activation of these receptors is typically initiated by neurotransmitter binding to the orthosteric binding site, located at the extracellular domain (ECD), which leads to the opening of the channel pore (gate) at the transmembrane domain (TMD). Whereas considerable knowledge on molecular mechanisms of Cys-loop receptor activation was gathered for the acetylcholine receptor, little is known with this respect about the GABAA receptor (GABAAR), which mediates cellular inhibition. Importantly, several static structures of GABAAR were recently described, paving the way to more in-depth molecular functional studies. Moreover, it has been pointed out that the TMD-ECD interface region plays a crucial role in transduction of conformational changes from the ligand binding site to the channel gate. One of the interface structures implicated in this transduction process is the M2-M3 loop with a highly conserved proline (P277) residue. To address this issue specifically for α1β2γ2L GABAAR, we choose to substitute proline α1P277 with amino acids with different physicochemical features such as electrostatic charge or their ability to change the loop flexibility. To address the functional impact of these mutations, we performed macroscopic and single-channel patch-clamp analyses together with modeling. Our findings revealed that mutation of α1P277 weakly affected agonist binding but was critical for all transitions of GABAAR gating: opening/closing, preactivation, and desensitization. In conclusion, we provide evidence that conservative α1P277 at the interface is strongly involved in regulating the receptor gating.
Collapse
|
6
|
GABA A receptor proline 273 at the interdomain interface of the β 2 subunit regulates entry into desensitization and opening/closing transitions. Life Sci 2022; 308:120943. [PMID: 36096246 DOI: 10.1016/j.lfs.2022.120943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
AIMS GABAA receptors belong to Cys-loop ion channel family and mediate inhibition in the brain. Despite the abundance of structural data on receptor structure, the molecular scenarios of activation are unknown. In this study we investigated the role of a β2P273 residue in channel gating transitions. This residue is located in a central position of the M2-M3 linker of the interdomain interface, expected to be predisposed to interact with another interfacial element, the β1-β2 loop of the extracellular side. The interactions occurring on this interface have been reported to couple agonist binding to channel gating. MAIN METHODS We recorded micro- and macroscopic current responses of recombinant GABAA receptors mutated at the β2P273 residue (to A, K, E) to saturating GABA. Electrophysiological data served as basis to kinetic modeling, used to decipher which gating transition were affected by mutations. KEY FINDINGS Mutations of this residue impaired macroscopic desensitization and accelerated current deactivation with P273E mutant showing greatest deviation from wild-type. Single-channel analysis revealed alterations mainly in short-lived shut times and shortening of openings, resulting in dramatic changes in intraburst open probability. Kinetic modeling indicated that β2P273 mutants show diminished entry into desensitized and open states as well as faster channel closing transitions. SIGNIFICANCE In conclusion, we demonstrate that β2P273 of the M2-M3 linker is a crucial element of the ECD-TMD interface regulating the receptor's ability to undergo late gating transitions. Henceforth, this region could be an important target for new pharmacological tools affecting GABAAR-mediated inhibition.
Collapse
|