1
|
Barylko B, Taylor CA, Wang J, Hedde PN, Chen Y, Hur KH, Binns DD, Brautigam CA, DeMartino GN, Mueller JD, Jameson DM, Albanesi JP. Analysis of Arc/Arg3.1 Oligomerization In Vitro and in Living Cells. Int J Mol Sci 2024; 25:6454. [PMID: 38928159 PMCID: PMC11203824 DOI: 10.3390/ijms25126454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling. Although its mechanisms of action in these forms of synaptic plasticity are not completely well established, the activities of Arc include the remodeling of the actin cytoskeleton, the facilitation of AMPA receptor (AMPAR) endocytosis, and the regulation of the transcription of AMPAR subunits. In addition, Arc has sequence and structural similarity to retroviral Gag proteins and self-associates into virus-like particles that encapsulate mRNA and perhaps other cargo for intercellular transport. Each of these activities is likely to be influenced by Arc's reversible self-association into multiple oligomeric species. Here, we used mass photometry to show that Arc exists predominantly as monomers, dimers, and trimers at approximately 20 nM concentration in vitro. Fluorescence fluctuation spectroscopy revealed that Arc is almost exclusively present as low-order (monomer to tetramer) oligomers in the cytoplasm of living cells, over a 200 nM to 5 μM concentration range. We also confirmed that an α-helical segment in the N-terminal domain contains essential determinants of Arc's self-association.
Collapse
Affiliation(s)
- Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| | - Clinton A. Taylor
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| | - Jason Wang
- Department of Physiology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (J.W.); (G.N.D.)
| | - Per Niklas Hedde
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., BSB 222, Honolulu, HI 96813, USA;
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA 92697, USA
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; (Y.C.); (K.-H.H.); (J.D.M.)
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; (Y.C.); (K.-H.H.); (J.D.M.)
| | - Derk D. Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| | - Chad A. Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA;
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (J.W.); (G.N.D.)
| | - Joachim D. Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; (Y.C.); (K.-H.H.); (J.D.M.)
| | - David M. Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., BSB 222, Honolulu, HI 96813, USA;
| | - Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| |
Collapse
|
2
|
Chen Y, Wang X, Xiao B, Luo Z, Long H. Mechanisms and Functions of Activity-Regulated Cytoskeleton-Associated Protein in Synaptic Plasticity. Mol Neurobiol 2023; 60:5738-5754. [PMID: 37338805 DOI: 10.1007/s12035-023-03442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is one of the most important regulators of cognitive functions in the brain regions. As a hub protein, Arc plays different roles in modulating synaptic plasticity. Arc supports the maintenance of long-term potentiation (LTP) by regulating actin cytoskeletal dynamics, while it guides the endocytosis of AMPAR in long-term depression (LTD). Moreover, Arc can self-assemble into capsids, leading to a new way of communicating among neurons. The transcription and translation of the immediate early gene Arc are rigorous procedures guided by numerous factors, and RNA polymerase II (Pol II) is considered to regulate the precise timing dynamics of gene expression. Since astrocytes can secrete brain-derived neurotrophic factor (BDNF) and L-lactate, their unique roles in Arc expression are emphasized. Here, we review the entire process of Arc expression and summarize the factors that can affect Arc expression and function, including noncoding RNAs, transcription factors, and posttranscriptional regulations. We also attempt to review the functional states and mechanisms of Arc in modulating synaptic plasticity. Furthermore, we discuss the recent progress in understanding the roles of Arc in the occurrence of major neurological disorders and provide new thoughts for future research on Arc.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|
3
|
Mergiya TF, Gundersen JET, Kanhema T, Brighter G, Ishizuka Y, Bramham CR. Detection of Arc/Arg3.1 oligomers in rat brain: constitutive and synaptic activity-evoked dimer expression in vivo. Front Mol Neurosci 2023; 16:1142361. [PMID: 37363319 PMCID: PMC10289200 DOI: 10.3389/fnmol.2023.1142361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
The immediate early gene product activity-regulated cytoskeleton-associated protein (Arc or Arg3.1) is a major regulator of long-term synaptic plasticity with critical roles in postnatal cortical development and memory formation. However, the molecular basis of Arc function is undefined. Arc is a hub protein with interaction partners in the postsynaptic neuronal compartment and nucleus. Previous in vitro biochemical and biophysical analysis of purified recombinant Arc showed formation of low-order oligomers and larger particles including retrovirus-like capsids. Here, we provide evidence for naturally occurring Arc oligomers in the mammalian brain. Using in situ protein crosslinking to trap weak Arc-Arc interactions, we identified in various preparations a prominent Arc immunoreactive band on SDS-PAGE of molecular mass corresponding to a dimer. While putative trimers, tetramers and heavier Arc species were detected, they were of lower abundance. Stimulus-evoked induction of Arc expression and dimer formation was first demonstrated in SH-SY5Y neuroblastoma cells treated with the muscarinic cholinergic agonist, carbachol, and in primary cortical neuronal cultures treated with brain-derived neurotrophic factor (BDNF). In the dentate gyrus (DG) of adult anesthetized rats, induction of long-term potentiation (LTP) by high-frequency stimulation (HFS) of medial perforant synapses or by brief intrahippocampal infusion of BDNF led to a massive increase in Arc dimer expression. Arc immunoprecipitation of crosslinked DG tissue showed enhanced dimer expression during 4 h of LTP maintenance. Mass spectrometric proteomic analysis of immunoprecipitated, gel-excised bands corroborated detection of Arc dimer. Furthermore, Arc dimer was constitutively expressed in naïve cortical, hippocampal and DG tissue, with the lowest levels in the DG. Taken together the results implicate Arc dimer as the predominant low-oligomeric form in mammalian brain, exhibiting regional differences in its constitutive expression and enhanced synaptic activity-evoked expression in LTP.
Collapse
Affiliation(s)
- Tadiwos F. Mergiya
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Jens Edvard Trygstad Gundersen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Grant Brighter
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R. Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Eriksen MS, Bramham CR. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity. Acta Physiol (Oxf) 2022; 236:e13886. [PMID: 36073248 PMCID: PMC9787330 DOI: 10.1111/apha.13886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
The immediate early gene, Arc, is a pivotal regulator of synaptic plasticity, memory, and cognitive flexibility. But what is Arc protein? How does it work? Inside the neuron, Arc is a protein interaction hub and dynamic regulator of intra-cellular signaling in synaptic plasticity. In remarkable contrast, Arc can also self-assemble into retrovirus-like capsids that are released in extracellular vesicles and capable of intercellular transfer of RNA. Elucidation of the molecular basis of Arc hub and capsid functions, and the relationship between them, is vital for progress. Here, we discuss recent findings on Arc structure-function and regulation of oligomerization that are giving insight into the molecular physiology of Arc. The unique features of mammalian Arc are emphasized, while drawing comparisons with Drosophila Arc and retroviral Gag. The Arc N-terminal domain, found only in mammals, is proposed to play a key role in regulating Arc hub signaling, oligomerization, and formation of capsids. Bringing together several lines of evidence, we hypothesize that Arc function in synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-are dictated by different oligomeric forms of Arc. Specifically, monomer/dimer function in LTP, tetramer function in basic LTD, and 32-unit oligomer function in enhanced LTD. The role of mammalian Arc capsids is unclear but likely depends on the cross-section of captured neuronal activity-induced RNAs. As the functional states of Arc are revealed, it may be possible to selectively manipulate specific forms of Arc-dependent plasticity and intercellular communication involved in brain function and dysfunction.
Collapse
Affiliation(s)
| | - Clive R. Bramham
- Department of BiomedicineUniversity of BergenBergenNorway,Mohn Research Center for the BrainUniversity of BergenBergenNorway
| |
Collapse
|
5
|
Breaking the Concentration Limit in Fluorescence Fluctuation Spectroscopy with Camera-Based Detection. Int J Mol Sci 2022; 23:ijms23179840. [PMID: 36077237 PMCID: PMC9456017 DOI: 10.3390/ijms23179840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is an extremely versatile tool that has been widely used to measure chemical reaction rates, protein binding, nanoparticle-protein interactions, and biomolecular dynamics in vitro and in vivo. As an inherently micro-sized approach, FCS is compatible with high-throughput screening applications, as demanded for drug design, but typically limited to nanomolar concentrations, which restricts possible applications. Here, we show how massively parallel camera-based detection with side illumination can extend the usable concentration range of FCS more than 100-fold to measure low affinity processes. Our line illumination (LIM) approach is robust, fast (1 s acquisition times), and does not require any reference measurements to characterize the observation volume size.
Collapse
|
6
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
7
|
Barylko B, Hedde PN, Taylor CA, Binns DD, Huang YK, Molinaro G, Huber KM, Jameson DM, Albanesi JP. Palmitoylation-regulated interactions of the pseudokinase calmodulin kinase-like vesicle-associated with membranes and Arc/Arg3.1. Front Synaptic Neurosci 2022; 14:926570. [PMID: 35965782 PMCID: PMC9371321 DOI: 10.3389/fnsyn.2022.926570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Calmodulin kinase-like vesicle-associated (CaMKv), a pseudokinase belonging to the Ca2+/calmodulin-dependent kinase family, is expressed predominantly in brain and neural tissue. It may function in synaptic strengthening during spatial learning by promoting the stabilization and enrichment of dendritic spines. At present, almost nothing is known regarding CaMKv structure and regulation. In this study we confirm prior proteomic analyses demonstrating that CaMKv is palmitoylated on Cys5. Wild-type CaMKv is enriched on the plasma membrane, but this enrichment is lost upon mutation of Cys5 to Ser. We further show that CaMKv interacts with another regulator of synaptic plasticity, Arc/Arg3.1, and that the interaction between these two proteins is weakened by mutation of the palmitoylated cysteine in CamKv.
Collapse
Affiliation(s)
- Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Per Niklas Hedde
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, United States
| | - Clinton A. Taylor
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Derk D. Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yu-Kai Huang
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, United States
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|