1
|
Watanangura A, Meller S, Suchodolski JS, Pilla R, Khattab MR, Loderstedt S, Becker LF, Bathen-Nöthen A, Mazzuoli-Weber G, Volk HA. The effect of phenobarbital treatment on behavioral comorbidities and on the composition and function of the fecal microbiome in dogs with idiopathic epilepsy. Front Vet Sci 2022; 9:933905. [PMID: 35990279 PMCID: PMC9386120 DOI: 10.3389/fvets.2022.933905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Phenobarbital (PB) is one of the most important antiseizure drugs (ASDs) to treat canine idiopathic epilepsy (IE). The effect of PB on the taxonomic changes in gastrointestinal microbiota (GIM) and their functions is less known, which may explain parts of its pharmacokinetic and pharmacodynamic properties, especially its antiseizure effect and drug responsiveness or drug resistance as well as its effect on behavioral comorbidities. Fecal samples of 12 dogs with IE were collected prior to the initiation of PB treatment and 90 days after oral PB treatment. The fecal samples were analyzed using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based dysbiosis index (DI), and quantification of short-chain fatty acids (SCFAs). Behavioral comorbidities were evaluated using standardized online questionnaires, namely, a canine behavioral assessment and research questionnaire (cBARQ), canine cognitive dysfunction rating scale (CCDR), and an attention deficit hyperactivity disorder (ADHD) questionnaire. The results revealed no significant changes in alpha and beta diversity or in the DI, whereas only the abundance of Clostridiales was significantly decreased after PB treatment. Fecal SCFA measurement showed a significant increase in total fecal SCFA concentration and the concentrations of propionate and butyrate, while acetate concentrations revealed an upward trend after 90 days of treatment. In addition, the PB-Responder (PB-R) group had significantly higher butyrate levels compared to the PB-Non-Responder (PB-NR) group. Metagenomics of functional pathway genes demonstrated a significant increase in genes in trehalose biosynthesis, ribosomal synthesis, and gluconeogenesis, but a decrease in V-ATPase-related oxidative phosphorylation. For behavioral assessment, cBARQ analysis showed improvement in stranger-directed fear, non-social fear, and trainability, while there were no differences in ADHD-like behavior and canine cognitive dysfunction (CCD) scores after 90 days of PB treatment. While only very minor shifts in bacterial taxonomy were detected, the higher SCFA concentrations after PB treatment could be one of the key differences between PB-R and PB-NR. These results suggest functional changes in GIM in canine IE treatment.
Collapse
Affiliation(s)
- Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Mohammad R. Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Shenja Loderstedt
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lisa F. Becker
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | - Gemma Mazzuoli-Weber
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- *Correspondence: Holger A. Volk
| |
Collapse
|
2
|
Krivoshein AV. α-Substituted Lactams and Acetamides: Ion Channel Modulators that Show Promise in Treating Drug-resistant Epilepsy. Cent Nerv Syst Agents Med Chem 2020; 20:79-87. [PMID: 32386500 DOI: 10.2174/1871524920666200510005458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
The two main problems in the pharmacotherapy of epilepsy are resistance to currently available first-line medications (which occurs in about one third of patients) and the high incidence of side effects. To address these two challenges, extensive efforts are being undertaken to design new, structurally distinct antiepileptic drugs with a broad spectrum of anticonvulsant activity. Tests in animal models of epilepsy indicate that α-substituted lactams and acetamides show a broad spectrum of anticonvulsant activity (including very promising activity in drug-resistant models) as well as an excellent safety profile. Limited clinical results confirm these preclinical findings. In the first part of this review, pharmacology and toxicology of α-substituted lactams and acetamides and their putative protein targets in the brain have been discussed. This is followed by a discussion of structure-activity relationships among α-alkyl-, α-aryl-, and α-aryl-α-alkyl-substituted derivatives. The most promising structures seem to be those related to 3-ethyl-3-phenylpyrrolidin-2-one, 2-phenylbutyramide, and 2- sec-butylvaleramide. The information presented in this review is expected to facilitate rational drug design and development efforts for α-substituted lactams and acetamides.
Collapse
Affiliation(s)
- Arcadius V Krivoshein
- Chemistry Program, University of Houston-Clear Lake, Houston, TX 77058, United States
| |
Collapse
|
3
|
Muthukumar A, Rao GN, Sekar G. Zn(OTf) 2-catalyzed access to symmetrical and unsymmetrical bisindoles from α-keto amides. Org Biomol Chem 2019; 17:3921-3933. [PMID: 30941387 DOI: 10.1039/c9ob00114j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zn(OTf)2-catalyzed synthesis of 3,3'-bisindolyl acetamides from α-keto amides is developed. Both aromatic α-keto amides substituted with electron-donating as well as -withdrawing groups and aliphatic α-keto amides are well tolerated to provide symmetrical bisindoles in moderate to excellent yields. The chemoselective bisindolylation of the keto group of α-keto amides in the presence of a simple keto functionality is successfully achieved in good yields. The transformation is further extended to the synthesis of challenging unsymmetrical bisindoles by treating indolyl α-hydroxy amides with substituted indoles. The unsymmetrical bisindoles are isolated in good to excellent yields.
Collapse
Affiliation(s)
- Alagesan Muthukumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | | | | |
Collapse
|
4
|
Krivoshein AV, Lindeman SV, Bentum S, Averkiev BB, Sena V, Timofeeva TV. Molecular arrangements in crystals of racemic and enantiopure forms of N-carbamoyl-2-phenylbutyramide and 2-phenylbutyramide: differences and similarities. Z KRIST-CRYST MATER 2018. [DOI: 10.1515/zkri-2018-2051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
As solid drugs may be regarded as “pharmaceutical materials”, molecular pharmaceutics of such drugs is expected to benefit from application of materials science concepts. In this paper, we used a structural chemistry approach to explain the dramatic difference in solubility between two structurally related antiepileptic drugs, N-carbamoyl-2-phenylbutyramide (NC2PBA) and 2-phenylbutyramide (2PBA). Since both of these compounds are chiral, we chromatographically separated the enantiomers and examined them along with the racemic forms. A combination of experimental (single-crystal X-ray diffraction, IR spectroscopy) and computational (crystal lattice energy calculations, Hirshfeld surface analysis) techniques was employed to determine the structural differences between these two compounds in the crystalline state. We found that while NC2PBA and 2PBA have similar molecular packing arrangements, the former compound is distinguished by a more extensive network of hydrogen bonds. Thus, the higher density, higher melting point, and lower solubility of crystalline NC2PBA compared to crystalline 2PBA may be largely explained by the differences in hydrogen bonding. We also found that for each of these compounds there are no major differences in molecular packing (and, correspondingly, in crystal lattice energies) between racemic and enantiopure forms.
Collapse
Affiliation(s)
- Arcadius V. Krivoshein
- Department of Physical and Applied Sciences , University of Houston – Clear Lake , 2700 Bay Area Boulevard , Houston, TX 77058 , USA
- Department of Chemistry , New Mexico Highlands University , P.O. Box 9000 , Las Vegas, NM 87701 , USA
| | - Sergey V. Lindeman
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee, WI 53201 , USA
| | - Samuel Bentum
- Department of Chemistry , New Mexico Highlands University , P.O. Box 9000 , Las Vegas, NM 87701 , USA
| | - Boris B. Averkiev
- Department of Chemistry , New Mexico Highlands University , P.O. Box 9000 , Las Vegas, NM 87701 , USA
| | - Victoria Sena
- Department of Chemistry , New Mexico Highlands University , P.O. Box 9000 , Las Vegas, NM 87701 , USA
| | - Tatiana V. Timofeeva
- Department of Chemistry , New Mexico Highlands University , P.O. Box 9000 , Las Vegas, NM 87701 , USA
| |
Collapse
|
5
|
Krivoshein AV, Lindeman SV, Timofeeva TV, Khrustalev VN. Racemic and enantiopure forms of 3-ethyl-3-phenylpyrrolidin-2-one adopt very different crystal structures. Chirality 2017; 29:623-633. [PMID: 28799177 DOI: 10.1002/chir.22735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Abstract
3-Ethyl-3-phenylpyrrolidin-2-one (EPP) is an experimental anticonvulsant based on the newly proposed α-substituted amide group pharmacophore. These compounds show robust activity in animal models of drug-resistant epilepsy and are thus promising for clinical development. In order to understand pharmaceutically relevant properties of such compounds, we are conducting an extensive investigation of their structures in the solid state. In this article, we report chiral high-performance liquid chromatography (HPLC) separation, determination of absolute configuration of enantiomers, and crystal structures of EPP. Preparative resolution of EPP enantiomers by chiral HPLC was accomplished on the Chiralcel OJ stationary phase in the polar-organic mode. Using a combination of electronic CD spectroscopy and anomalous dispersion of X-rays we established that the first-eluted enantiomer corresponds to (+)-(R)-EPP, while the second-eluted enantiomer corresponds to (-)-(S)-EPP. We also demonstrated that, in the crystalline state, enantiopure and racemic forms of this anticonvulsant have considerable differences in their supramolecular organization and patterns of hydrogen bonding. These stereospecific structural differences can be related to the differences in melting points and, correspondingly, solubility and bioavailability.
Collapse
Affiliation(s)
- Arcadius V Krivoshein
- Department of Physical & Applied Sciences, University of Houston - Clear Lake, Houston, Texas, USA
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Tatiana V Timofeeva
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - Victor N Khrustalev
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, USA.,Department of Inorganic Chemistry, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|