1
|
Guo H, Gao Y, Sun D, Liu X, Qiao J, Liu T, Su J. Molecular Insights into Pharmacological Mechanism of Insect Kir Channels and the Toxicity of Kir Inhibitors on Hemipteran Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6522-6536. [PMID: 40062477 DOI: 10.1021/acs.jafc.4c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Inwardly rectifying potassium channels (Kir) play a key role in regulating various physiological processes. However, the structural and pharmacological mechanisms of insect Kir channels remain unclear. In this study, we show that coexpression of different Kir subunits in the same tissue did not affect the rectification properties of strongly rectifying Kir. The Kir inhibitor VU041, along with the insecticide flonicamid and its metabolite flumetnicam, were tested for their inhibitory effects on the homotetrameric Kir1 and Kir2 channels. Both Kir1 and Kir2 channels from the two insect species showed similar pharmacological responses to VU041, flonicamid, and flumetnicam. However, VU041 demonstrated significantly higher inhibitory activity than both insecticides across all four Kir channels, while flumetnicam exhibited the weakest inhibition. Molecular docking analyses indicate that the binding site of VU041 is not the same as that of flonicamid, and flumetnicam. flonicamid, and flumetnicam have binding sites similar to the ATP binding sites in cytoplasmic region of human Kir6.2, whereas VU041 is located in the pore of the ion channel, and serves as a pore blocker that inhibits Kir channels. Mutation analysis confirmed the essential roles of these residues in channel function and binding affinity. Finally, the toxicities of the three inhibitors were evaluated in N. lugens and M. persicae. VU041, a potent inhibitor of the insect Kir channel, showed lower toxicity compared to the other two inhibitors, whereas flumethoxan, which is less active on the Kir1 channel, showed higher toxicity, probably related to the different bioavailability of the different compounds. These findings suggest that the potential of targeting Kir channels as insecticidal strategies requires further evaluation.
Collapse
Affiliation(s)
- Hailiang Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuying Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jizu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianya Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Haoui M, Vergara C, Kenzler L, Schröer J, Zimmer-Bensch G, Fleck D, Wiesbrock C, Spehr M, Lishko PV. Kir7.1 is the physiological target for hormones and steroids that regulate uteroplacental function. SCIENCE ADVANCES 2025; 11:eadr5086. [PMID: 40043131 PMCID: PMC11881918 DOI: 10.1126/sciadv.adr5086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Preterm birth is detrimental to the well-being of both the mother and the newborn. During normal gestation, the myometrium is maintained in a quiescent state by progesterone. As a steroid hormone, progesterone is thought to modify uterine and placental morphology by altering gene expression, but another direct mode of action has long been suspected. Here, we reveal the nongenomic molecular mechanism of progesterone as the activation of human and murine inwardly rectifying potassium channel Kir7.1, which is expressed in myometrium and placental pericytes during late gestation. Kir7.1 is also activated by selective steroids, including those used to prevent premature labor, such as 17-α-hydroxyprogesterone caproate and dydrogesterone, revealing their unexpected mode of action. Our results reveal that Kir7.1 is the molecular target of both endogenous and synthetic steroids that control uterine excitability and placental function. Kir7.1, therefore, is a promising therapeutic target to support healthy pregnancy during mid and late gestation.
Collapse
Affiliation(s)
- Monika Haoui
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Citlalli Vergara
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), WashU Medicine; Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Lina Kenzler
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Jerome Schröer
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Department of Neuroepigenetics, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Christopher Wiesbrock
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Polina V. Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), WashU Medicine; Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Tang D, Xu J, Bao W, Xu F, Qi J, Tan Z, Li C, Luo X, You X, Rong M, Liu Z, Tang C. Pore blocking mechanisms of centipede toxin SsTx-4 on the inwardly rectifying potassium channels. Eur J Pharmacol 2025; 988:177213. [PMID: 39706465 DOI: 10.1016/j.ejphar.2024.177213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.2 in our previous study. Alanine-scanning mutagenesis analysis identified key molecular determinants on the SsTx-4 toxin interacting with these Kir channels, as well as those on the Kir6.2 channel interacting with the toxin. However, the key residues on Kir1.1 and Kir4.1 channels responsible for binding SsTx-4 remain unclear. Here, using a combination of site-directed mutagenesis, patch-clamp analysis, molecular docking with AlphaFold 3, and molecular dynamic simulations, we revealed that SsTx-4 acted on the Kir channels as a pore blocker, with K13 on toxin serving as the functional pore-blocking residue and other residues on it contributing to stabilize the toxin-channel complex by binding to multiple residues on the wall of the channels' outer vestibule, involving E104 on Kir1.1; D100, L115, and F133 on Kir4.1; and E108, S113, H115, and M137 on Kir6.2. Collectively, these findings advanced our understanding on the interaction between Kir channels and this prototype Kir antagonist, providing insights that could inspire the development of more potent and specific Kir subtype blockers in the future.
Collapse
Affiliation(s)
- Dongfang Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China; The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Jiahui Xu
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhu Bao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Fanping Xu
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jieqiong Qi
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zheni Tan
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chuanli Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xia You
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| |
Collapse
|
4
|
Li K, Satpute Janve V, Denton J. Characterization of four structurally diverse inhibitors of SUR2-containing K ATP channels. Channels (Austin) 2024; 18:2398565. [PMID: 39303216 PMCID: PMC11418212 DOI: 10.1080/19336950.2024.2398565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Vascular smooth muscle ATP-sensitive potassium (KATP) channels play critical roles in modulating vascular tone and thus represent important drug targets for diverse cardiovascular pathologies. Despite extensive research efforts spanning several decades, the search for selective inhibitors that can discriminate between vascular KATP (i.e. Kir6.1/SUR2B) and pancreatic and brain KATP (i.e. Kir6.2/SUR1) channels has, until recently, been unsuccessful. Our group therefore carried out a high-throughput screen of chemically diverse compounds with the goal of discovering specific Kir6.1/SUR2B inhibitors. This screen identified several novel classes of Kir6.1/SUR2B inhibitors, including the first potent (IC50 ~100 nM) and selective inhibitor published to date, termed VU0542270. Here, we expand on this work by disclosing the identity and pharmacological properties of four additional Kir6.1/SUR2B inhibitors that are structurally unrelated to Kir to VU0542270. These inhibitors, named VU0212387, VU0543336, VU0605768, and VU0544086, inhibit Kir6.1/SUR2B with IC50 values ranging from approximately 100 nM to 1 µM and exhibit no apparent inhibitory activity toward Kir6.2/SUR1. Functional analysis of heterologously expressed subunit combinations of Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B and demonstrated that all four inhibitors act on SUR2 to induce channel inhibition. Interestingly, VU0543336 and VU0212387 exhibit paradoxical stimulatory effects on Kir6.2/SUR1 at higher doses. This study broadens our understanding of KATP channel pharmacology, generally, and reveals novel chemical matter for the development of Kir6.1/SUR2-selective drugs, specifically.
Collapse
Affiliation(s)
- Kangjun Li
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jerod Denton
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN
| |
Collapse
|
5
|
Li L, Hernandez CC, Gimenez LE, Xu B, Dahir NS, Swati, Birnbaum SG, Cone RD, Liu C. Functional coupling between MC4R and Kir7.1 contributes to clozapine-induced hyperphagia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597973. [PMID: 38895206 PMCID: PMC11185771 DOI: 10.1101/2024.06.07.597973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Most antipsychotic drugs (APDs) induce hyperphagia and weight gain. However, the neural mechanisms are poorly understood, partly due to challenges replicating their metabolic effects in rodents. Here, we report a new mouse model that recapitulates overeating induced by clozapine, a widely prescribed APD. Our study shows that clozapine boosts food intake by inhibiting melanocortin 4 receptor (MC4R) expressing neurons in the paraventricular nucleus of the hypothalamus. Interestingly, neither clozapine nor risperidone, another commonly used APD, affects receptor-ligand binding or the canonical Gαs signaling of MC4R. Instead, they inhibit neuronal activity by enhancing the coupling between MC4R and Kir7.1, leading to the open state of the inwardly rectifying potassium channel. Deletion of Kir7.1 in Mc4r-Cre neurons prevents clozapine-induced weight gain, while treatment with a selective Kir7.1 blocker mitigates overeating in clozapine-fed mice. Our findings unveil a molecular pathway underlying the effect of APDs on feeding behavior and suggest its potential as a therapeutic target.
Collapse
|
6
|
Peisley A, Hernandez CC, Dahir NS, Koepping L, Raczkowski A, Su M, Ghamari-Langroudi M, Ji X, Gimenez LE, Cone RD. Structure of the Ion Channel Kir7.1 and Implications for its Function in Normal and Pathophysiologic States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597981. [PMID: 38895219 PMCID: PMC11185801 DOI: 10.1101/2024.06.07.597981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hereditary defects in the function of the Kir7.1 in the retinal pigment epithelium are associated with the ocular diseases retinitis pigmentosa, Leber congenital amaurosis, and snowflake vitreal degeneration. Studies also suggest that Kir7.1 may be regulated by a GPCR, the melanocortin-4 receptor, in certain hypothalamic neurons. We present the first structures of human Kir7.1 and describe the conformational bias displayed by two pathogenic mutations, R162Q and E276A, to provide an explanation for the basis of disease and illuminate the gating pathway. We also demonstrate the structural basis for the blockade of the channel by a small molecule ML418 and demonstrate that channel blockade in vivo activates MC4R neurons in the paraventricular nucleus of the hypothalamus (PVH), inhibiting food intake and inducing weight loss. Preliminary purification, and structural and pharmacological characterization of an in tandem construct of MC4R and Kir7.1 suggests that the fusion protein forms a homotetrameric channel that retains regulation by liganded MC4R molecules.
Collapse
Affiliation(s)
- Alys Peisley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | - Naima S. Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Laura Koepping
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | - Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | - Xinrui Ji
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Luis E. Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Hernandez CC, Gimenez LE, Cone RD. Automated Patch Clamp Recordings of GPCR-Gated Ion Channels: Targeting the MC4-R/Kir7.1 Potassium Channel Complex. Methods Mol Biol 2024; 2796:229-248. [PMID: 38856905 DOI: 10.1007/978-1-0716-3818-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Zietara A, Palygin O, Levchenko V, Dissanayake LV, Klemens CA, Geurts A, Denton JS, Staruschenko A. K ir7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2023; 325:F177-F187. [PMID: 37318990 PMCID: PMC10393338 DOI: 10.1152/ajprenal.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.
Collapse
Affiliation(s)
- Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans Hospital, Tampa, Florida, United States
| |
Collapse
|
9
|
Csuvik O, Szatmári I. Synthesis of Bioactive Aminomethylated 8-Hydroxyquinolines via the Modified Mannich Reaction. Int J Mol Sci 2023; 24:ijms24097915. [PMID: 37175622 PMCID: PMC10177806 DOI: 10.3390/ijms24097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.
Collapse
Affiliation(s)
- Oszkár Csuvik
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
10
|
Staruschenko A, Hodges MR, Palygin O. Kir5.1 channels: potential role in epilepsy and seizure disorders. Am J Physiol Cell Physiol 2022; 323:C706-C717. [PMID: 35848616 PMCID: PMC9448276 DOI: 10.1152/ajpcell.00235.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Inwardly rectifying potassium (Kir) channels are broadly expressed in many mammalian organ systems, where they contribute to critical physiological functions. However, the importance and function of the Kir5.1 channel (encoded by the KCNJ16 gene) have not been fully recognized. This review focuses on the recent advances in understanding the expression patterns and functional roles of Kir5.1 channels in fundamental physiological systems vital to potassium homeostasis and neurological disorders. Recent studies have described the role of Kir5.1-forming Kir channels in mouse and rat lines with mutations in the Kcnj16 gene. The animal research reveals distinct renal and neurological phenotypes, including pH and electrolyte imbalances, blunted ventilatory responses to hypercapnia/hypoxia, and seizure disorders. Furthermore, it was confirmed that these phenotypes are reminiscent of those in patient cohorts in which mutations in the KCNJ16 gene have also been identified, further suggesting a critical role for Kir5.1 channels in homeostatic/neural systems health and disease. Future studies that focus on the many functional roles of these channels, expanded genetic screening in human patients, and the development of selective small-molecule inhibitors for Kir5.1 channels, will continue to increase our understanding of this unique Kir channel family member.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Matthew R Hodges
- Department of Physiology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
11
|
Lv YY, Wang H, Fan HT, Xu T, Xin WJ, Guo RX. SUMOylation of Kir7.1 participates in neuropathic pain through regulating its membrane expression in spinal cord neurons. CNS Neurosci Ther 2022; 28:1259-1267. [PMID: 35633059 PMCID: PMC9253747 DOI: 10.1111/cns.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Potassium (K+) channels have been demonstrated to play a prominent involvement in nociceptive processing. Kir7.1, the newest members of the Kir channel family, has not been extensively studied in the CNS, and its function remains largely unknown. The present study investigated the role of spinal Kir7.1 in the development of pathological pain. Methods and Results Neuropathic pain was induced by spared nerve injury (SNI). The mechanical sensitivity was assessed by von Frey test. Immunofluorescence staining assay revealed that Kir7.1 was predominantly expressed in spinal neurons but not astrocytes or microglia in normal rats. Western blot results showed that SNI markedly decreased the total and membrane expression of Kir7.1 in the spinal dorsal horn accompanied by mechanical hypersensitivity. Blocking Kir7.1 with the specific antagonist ML418 or knockdown kir7.1 by siRNA led to mechanical allodynia. Co‐IP results showed that the spinal kir7.1 channels were decorated by SUMO‐1 but not SUMO‐2/3, and Kir7.1 SUMOylation was upregulated following SNI. Moreover, inhibited SUMOylation by GA (E1 inhibitor) or 2‐D08 (UBC9 inhibitor) can increase the spinal surface Kir7.1 expression. Conclusion SUMOylation of the Kir7.1 in the spinal cord might contribute to the development of SNI‐induced mechanical allodynia by decreasing the Kir7.1 surface expression in rats.
Collapse
Affiliation(s)
- You-You Lv
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ting Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Rui-Xian Guo
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
McClenahan SJ, Kent CN, Kharade SV, Isaeva E, Williams JC, Han C, Terker A, Gresham R, Lazarenko RM, Days EL, Romaine IM, Bauer JA, Boutaud O, Sulikowski GA, Harris R, Weaver CD, Staruschenko A, Lindsley CW, Denton JS. VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels. Mol Pharmacol 2022; 101:357-370. [PMID: 35246480 PMCID: PMC9092466 DOI: 10.1124/molpharm.121.000464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
Heteromeric Kir4.1/Kir5.1 (KCNJ10/KCNJ16) inward rectifier potassium (Kir) channels play key roles in the brain and kidney, but pharmacological tools for probing their physiology and therapeutic potential have not been developed. Here, we report the discovery, in a high-throughput screening of 80,475 compounds, of the moderately potent and selective inhibitor VU0493690, which we selected for characterization and chemical optimization. VU0493690 concentration-dependently inhibits Kir4.1/5.1 with an IC50 of 0.96 μM and exhibits at least 10-fold selectivity over Kir4.1 and ten other Kir channels. Multidimensional chemical optimization of VU0493690 led to the development of VU6036720, the most potent (IC50 = 0.24 μM) and selective (>40-fold over Kir4.1) Kir4.1/5.1 inhibitor reported to date. Cell-attached patch single-channel recordings revealed that VU6036720 inhibits Kir4.1/5.1 activity through a reduction of channel open-state probability and single-channel current amplitude. Elevating extracellular potassium ion by 20 mM shifted the IC50 6.8-fold, suggesting that VU6036720 is a pore blocker that binds in the ion-conduction pathway. Mutation of the "rectification controller" asparagine 161 to glutamate (N161E), which is equivalent to small-molecule binding sites in other Kir channels, led to a strong reduction of inhibition by VU6036720. Renal clearance studies in mice failed to show a diuretic response that would be consistent with inhibition of Kir4.1/5.1 in the renal tubule. Drug metabolism and pharmacokinetics profiling revealed that high VU6036720 clearance and plasma protein binding may prevent target engagement in vivo. In conclusion, VU6036720 represents the current state-of-the-art Kir4.1/5.1 inhibitor that should be useful for probing the functions of Kir4.1/5.1 in vitro and ex vivo. SIGNIFICANCE STATEMENT: Heteromeric inward rectifier potassium (Kir) channels comprising Kir4.1 and Kir5.1 subunits play important roles in renal and neural physiology and may represent inhibitory drug targets for hypertension and edema. Herein, we employ high-throughput compound library screening, patch clamp electrophysiology, and medicinal chemistry to develop and characterize the first potent and specific in vitro inhibitor of Kir4.1/5.1, VU6036720, which provides proof-of-concept that drug-like inhibitors of this channel may be developed.
Collapse
Affiliation(s)
- Samantha J McClenahan
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Caitlin N Kent
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Sujay V Kharade
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Elena Isaeva
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Jade C Williams
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Changho Han
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Andrew Terker
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Robert Gresham
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Roman M Lazarenko
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Emily L Days
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Ian M Romaine
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Joshua A Bauer
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Olivier Boutaud
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Gary A Sulikowski
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Raymond Harris
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - C David Weaver
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Alexander Staruschenko
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Craig W Lindsley
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Jerod S Denton
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| |
Collapse
|
13
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
14
|
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
15
|
Weaver CD, Denton JS. Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology. Am J Physiol Cell Physiol 2021; 320:C1125-C1140. [PMID: 33826405 DOI: 10.1152/ajpcell.00548.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inward rectifying potassium (Kir) channels play important roles in both excitable and nonexcitable cells of various organ systems and could represent valuable new drug targets for cardiovascular, metabolic, immune, and neurological diseases. In nonexcitable epithelial cells of the kidney tubule, for example, Kir1.1 (KCNJ1) and Kir4.1 (KCNJ10) are linked to sodium reabsorption in the thick ascending limb of Henle's loop and distal convoluted tubule, respectively, and have been explored as novel-mechanism diuretic targets for managing hypertension and edema. G protein-coupled Kir channels (Kir3) channels expressed in the central nervous system are critical effectors of numerous signal transduction pathways underlying analgesia, addiction, and respiratory-depressive effects of opioids. The historical dearth of pharmacological tool compounds for exploring the therapeutic potential of Kir channels has led to a molecular target-based approach using high-throughput screen (HTS) of small-molecule libraries and medicinal chemistry to develop "next-generation" Kir channel modulators that are both potent and specific for their targets. In this article, we review recent efforts focused specifically on discovery and improvement of target-selective molecular probes. The reader is introduced to fluorescence-based thallium flux assays that have enabled much of this work and then provided with an overview of progress made toward developing modulators of Kir1.1 (VU590, VU591), Kir2.x (ML133), Kir3.X (ML297, GAT1508, GiGA1, VU059331), Kir4.1 (VU0134992), and Kir7.1 (ML418). We discuss what is known about the small molecules' molecular mechanisms of action, in vitro and in vivo pharmacology, and then close with our view of what critical work remains to be done.
Collapse
Affiliation(s)
- C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
Cosme D, Estevinho MM, Rieder F, Magro F. Potassium channels in intestinal epithelial cells and their pharmacological modulation: a systematic review. Am J Physiol Cell Physiol 2020; 320:C520-C546. [PMID: 33326312 DOI: 10.1152/ajpcell.00393.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several potassium channels (KCs) have been described throughout the gastrointestinal tract. Notwithstanding, their contribution to both physiologic and pathophysiologic conditions, as inflammatory bowel disease (IBD), remains underexplored. Therefore, we aim to systematically review, for the first time, the evidence on the characteristics and modulation of KCs in intestinal epithelial cells (IECs). PubMed, Scopus, and Web of Science were searched to identify studies focusing on KCs and their modulation in IECs. The included studies were assessed using a reporting inclusiveness checklist. From the 745 identified records, 73 met the inclusion criteria; their reporting inclusiveness was moderate-high. Some studies described the physiological role of KCs, while others explored their importance in pathological settings. Globally, in IBD animal models, apical KCa1.1 channels, responsible for luminal secretion, were upregulated. In human colonocytes, basolateral KCa3.1 channels were downregulated. The pharmacological inhibition of K2P and Kv influenced intestinal barrier function, promoting inflammation. Evidence suggests a strong association between KCs expression and secretory mechanisms in human and animal IECs. Further research is warranted to explore the usefulness of KC pharmacological modulation as a therapeutic target.
Collapse
Affiliation(s)
- Dina Cosme
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases, and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
| |
Collapse
|
17
|
Manis AD, Hodges MR, Staruschenko A, Palygin O. Expression, localization, and functional properties of inwardly rectifying K + channels in the kidney. Am J Physiol Renal Physiol 2020; 318:F332-F337. [PMID: 31841387 PMCID: PMC7052651 DOI: 10.1152/ajprenal.00523.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Inwardly rectifying K+ (Kir) channels are expressed in multiple organs and cell types and play critical roles in cellular function. Most notably, Kir channels are major determinants of the resting membrane potential and K+ homeostasis. The renal outer medullary K+ channel (Kir1.1) was the first renal Kir channel identified and cloned in the kidney over two decades ago. Since then, several additional members, including classical and ATP-regulated Kir family classes, have been identified to be expressed in the kidney and to contribute to renal ion transport. Although the ATP-regulated Kir channel class remains the most well known due to severe pathological phenotypes associated with their mutations, progress is being made in defining the properties, localization, and physiological functions of other renal Kir channels, including those localized to the basolateral epithelium. This review is primarily focused on the current knowledge of the expression and localization of renal Kir channels but will also briefly describe their proposed functions in the kidney.
Collapse
Affiliation(s)
- Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Burgos J, Villanueva S, Ojeda M, Cornejo I, Cid LP, Sepúlveda FV. Kir7.1 inwardly rectifying K + channel is expressed in ciliary body non pigment epithelial cells and might contribute to intraocular pressure regulation. Exp Eye Res 2019; 186:107723. [PMID: 31319081 DOI: 10.1016/j.exer.2019.107723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
Abstract
Inwardly rectifying K+ channel Kir7.1 is expressed in epithelia where it shares membrane localisation with the Na+/K+-pump. The ciliary body epithelium (CBE) of the eye is a determinant of intraocular pressure (IOP) through NaCl-driven fluid secretion of aqueous humour. In the present study we explored the presence Kir7.1 in this epithelium in the mouse and its possible functional role in the generation of IOP. Use heterozygous animals for total Kir7.1 knockout expressing β-galactosidase under the control of Kir7.1 promoter, identified the expression of Kir7.1 in non-pigmented epithelial cells of CBE. Using conditional, floxed knockout Kir7.1 mice as negative controls, we found Kir7.1 at the basolateral membrane of the same CBE cell layer. This was confirmed using a knockin mouse expressing the Kir7.1 protein tagged with a haemagglutinin epitope. Measurements using the conditional knockout mouse show only a minor effect of Kir7.1 inactivation on steady-state IOP. Transient increases in IOP in response to general anaesthetics, or to water injection, are absent or markedly curtailed in Kir7.1-deficient mice. These results suggest a role for Kir7.1 in IOP regulation through a possible modulation of aqueous humour production by the CBE non-pigmented epithelial cells. The location of Kir7.1 in the CBE, together with the effect of its removal on dynamic changes in IOP, point to a possible role of the channel as a leak pathway preventing cellular overload of K+ during the secretion process. Kir7.1 could be used as a potential therapeutic target in pathological conditions leading to elevated intraocular pressure.
Collapse
Affiliation(s)
- Johanna Burgos
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Valdivia, Chile
| | - Sandra Villanueva
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Margarita Ojeda
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Valdivia, Chile
| | - Isabel Cornejo
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Valdivia, Chile
| | - L Pablo Cid
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Valdivia, Chile
| | | |
Collapse
|
19
|
Synthesis and Cytoprotective Characterization of 8-Hydroxyquinoline Betti Products. Molecules 2018; 23:molecules23081934. [PMID: 30072653 PMCID: PMC6222637 DOI: 10.3390/molecules23081934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
The 8-hydroxyquinoline pharmacophore scaffold has been shown to possess a range of activities as metal chelation, enzyme inhibition, cytotoxicity, and cytoprotection. Based on our previous findings we set out to optimize the scaffold for cytoprotective activity for its potential application in central nervous system related diseases. A 48-membered Betti-library was constructed by the utilization of formic acid mediated industrial-compatible coupling with sets of aromatic primary amines such as anilines, oxazoles, pyridines, and pyrimidines, with (hetero)aromatic aldehydes and 8-hydroxiquinoline derivatives. After column chromatography and re-crystallization, the corresponding analogues were obtained in yields of 13–90%. The synthesized analogs were optimized with the utilization of a cytoprotection assay with chemically induced oxidative stress, and the most active compounds were further tested in orthogonal assays, a real time cell viability method, a fluorescence-activated cell sorting (FACS)-based assay measuring mitochondrial membrane potential changes, and gene expression analysis. The best candidates showed potent, nanomolar activity in all test systems and support the need for future studies in animal models of central nervous system (CNS) disorders.
Collapse
|
20
|
Kharade SV, Kurata H, Bender AM, Blobaum AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, Satlin LM, Meiler J, Weaver CD, Lindsley CW, Hopkins CR, Denton JS. Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992. Mol Pharmacol 2018; 94:926-937. [PMID: 29895592 PMCID: PMC6041953 DOI: 10.1124/mol.118.112359] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Sujay V Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Haruto Kurata
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Aaron M Bender
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Anna L Blobaum
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Eric E Figueroa
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Amanda Duran
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Emily Days
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Paige Vinson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Daniel Flores
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Lisa M Satlin
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jens Meiler
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - C David Weaver
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Craig W Lindsley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Corey R Hopkins
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| |
Collapse
|
21
|
Denton JS, Kharade SV. Plight of the pore polar bar(rier). Channels (Austin) 2017; 11:502-503. [PMID: 28806132 DOI: 10.1080/19336950.2017.1367234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jerod S Denton
- a Department of Anesthesiology , Vanderbilt University Medical Center , Nashville , TN , USA.,b Department of Pharmacology , Vanderbilt University , Nashville , TN , USA
| | - Sujay V Kharade
- a Department of Anesthesiology , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
22
|
Kharade SV, Sheehan JH, Figueroa EE, Meiler J, Denton JS. Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590. Mol Pharmacol 2017; 92:338-346. [PMID: 28619748 PMCID: PMC5553192 DOI: 10.1124/mol.117.108472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022] Open
Abstract
VU590 was the first publicly disclosed, submicromolar-affinity (IC50 = 0.2 μM), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC50 ∼ 8 μM), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and patch clamp electrophysiology to elucidate the molecular mechanisms underlying VU590 inhibition of Kir1.1 and Kir7.1. Block of both channels is voltage- and K+-dependent, suggesting the VU590 binding site is located within the pore. Mutagenesis analysis in Kir1.1 revealed that asparagine 171 (N171) is the only pore-lining residue required for high-affinity block, and that substituting negatively charged residues (N171D, N171E) at this position dramatically weakens block. In contrast, substituting a negatively charged residue at the equivalent position in Kir7.1 enhances block by VU590, suggesting the VU590 binding mode is different. Interestingly, mutations of threonine 153 (T153) in Kir7.1 that reduce constrained polarity at this site (T153C, T153V, T153S) make wild-type and binding-site mutants (E149Q, A150S) more sensitive to block by VU590. The Kir7.1-T153C mutation enhances block by the structurally unrelated inhibitor VU714 but not by a higher-affinity analog ML418, suggesting that the polar side chain of T153 creates a barrier to low-affinity ligands that interact with E149 and A150. Reverse mutations in Kir1.1 suggest that this mechanism is conserved in other Kir channels. This study reveals a previously unappreciated role of membrane pore polarity in determination of Kir channel inhibitor pharmacology.
Collapse
Affiliation(s)
- Sujay V Kharade
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Jonathan H Sheehan
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Eric E Figueroa
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Jerod S Denton
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
23
|
Wang J, Li Y, Li K, Meng X, Hou H. Highly Selective Turn-On Fluorescent Chemodosimeter for AlIII
Detection through AlIII
-Promoted Hydrolysis of C=N Double Bonds in the 8-Hydroxyquinoline Aldehyde Schiff Base. Chemistry 2017; 23:5081-5089. [DOI: 10.1002/chem.201606024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Jinmin Wang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Henan 450001 P. R. China
| | - Yuanyuan Li
- School of Chemistry and Chemical Engineering; Henan University of Technology; Henan 450001 P. R. China
| | - Kai Li
- College of Chemistry and Molecular Engineering; Zhengzhou University; Henan 450001 P. R. China
| | - Xiangru Meng
- College of Chemistry and Molecular Engineering; Zhengzhou University; Henan 450001 P. R. China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering; Zhengzhou University; Henan 450001 P. R. China
| |
Collapse
|
24
|
Crankshaw DJ, Crosby DA, Morrison JJ. Effects of the KIR7.1 Blocker VU590 on Spontaneous and Agonist-Induced Contractions of Human Pregnant Myometrium. Reprod Sci 2017; 24:1402-1409. [PMID: 28071357 DOI: 10.1177/1933719116687657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
KIR7.1, an inwardly rectifying K+ channel, plays a critical role in regulating uterine excitability during pregnancy and has been suggested as a potential new target for the treatment of conditions arising from dysfunctional uterine contractility, for example, atonic postpartum hemorrhage. The aim of this study was to investigate the effects of the selective KIR7.1 blocker, VU590, on both spontaneous and agonist-stimulated contractions of human pregnant myometrium in vitro. At a concentration of 20 µmol/L, VU590 significantly increased the mean contractile force and the frequency of spontaneous contractions ( P < 0.05) when compared to vehicle-treated tissues. However, there was a significant ( P < 0.0001) monoexponential decay in amplitude with time of exposure. When VU590 was coadministered with EC50 concentration of the uterotonics oxytocin, ergometrine, or carboprost, the only significant changes were an immediate decrease in the amplitude of oxytocin- and carboprost-induced contractions and a delayed reduction in amplitude and an increase in the frequency of ergometrine-induced contractions. Amplitude to all 3 agents in the presence of VU590 showed a monoexponential decay with time of exposure ( P < 0.0001). We conclude that VU590 modifies the contractility of pregnant human myometrium in support of a role for KIR7.1 in regulating that process. However, VU590 in vitro does not produce the types of contraction, either alone or in combination with other uterine stimulants that would suggest its usefulness as a first- or second-line clinical uterotonic agent.
Collapse
Affiliation(s)
- Denis J Crankshaw
- 1 Department of Obstetrics and Gynaecology, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - David A Crosby
- 1 Department of Obstetrics and Gynaecology, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - John J Morrison
- 1 Department of Obstetrics and Gynaecology, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|