1
|
Horizumi Y, Tanada R, Kurosawa Y, Takatsuka M, Tsuchida T, Goto S. Reactivity of Olanzapine and Tricyclic Antidepressants on the Protective Effects of Trolox on Lipid Peroxidation Evaluated Using Fluorescence Anisotropy, Electron Paramagnetic Resonance Spectrometry, and Thermal Analysis. ACS Chem Neurosci 2025; 16:462-478. [PMID: 39818700 PMCID: PMC11809279 DOI: 10.1021/acschemneuro.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes. By contrast, their effects on membrane fluidity were measured as the suppressive contributions of the inhibitory activity of Trolox on lipid oxidation. These drugs inhibit lipid peroxidation and exclude harmful reactive oxygen species and the protective effect of Trolox. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in saturated phospholipid liposome-containing drugs suggested that olanzapine, imipramine, and dibucaine enhanced membrane fluidity. The radical scavenging activity of 2,2-diphenylpicrylhidrazyl and galvinoxyl radicals was determined using electron paramagnetic resonance experiments, and their molecular flexibility was determined using thermograms for differential scanning calorimetry. Multiple regression analyses of the linear free energy relationship approach and comparative investigations revealed that the membranous fluidity of the liposomes, independent of the radical scavenging activity of the drugs, induced the inhibitory activity on lipid peroxidation. We discussed how these drugs act on nervous membranes and aimed to identify the relationship between uncertified functions and membranous fluidity.
Collapse
Affiliation(s)
- Yusuke Horizumi
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reo Tanada
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuya Kurosawa
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Miwa Takatsuka
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Tsuchida
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Zeppilli D, Grolla G, Di Marco V, Ribaudo G, Orian L. Radical Scavenging and Anti-Ferroptotic Molecular Mechanism of Olanzapine: Insight from a Computational Analysis. Inorg Chem 2024; 63:21856-21867. [PMID: 39287358 DOI: 10.1021/acs.inorgchem.4c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Olanzapine is an antipsychotic drug that has been reported to suppress ferroptosis, a recently discovered form of regulated cell death. In this work, the scavenging activity of olanzapine and some of its metabolites is investigated in silico using state-of-the-art density functional theory calculations (level of theory: (SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)). Indeed, this reactivity is linked to the therapeutic activity of many antipsychotic drugs and ferroptosis inhibitors. Furthermore, the distinction between hydrogen atom transfer (HAT) and concerted proton coupled electron transfer (cPCET) is elucidated for the most reactive sites of the studied molecules. Then, a promising experimentally guided anti-ferroptotic cyclic mechanism is proposed for ferrostatin-1, a well-known ferroptosis inhibitor, involving the oxidation of FeII to FeIII, the quenching of hydroperoxyl radicals, and the subsequent regeneration of the reactant (level of theory: M06/6-311+G(d,p),def2TZVP//M06/6-31G(d),LANL2DZ). An analogous cyclic process is investigated for liproxstatin-1 and olanzapine, whose activity has been reported in the literature and compared to ferrostatin-1. Finally, the effect of water solvation is evaluated unveiling that the anti-ferroptotic activity of olanzapine is likely less efficient in polar media.
Collapse
Affiliation(s)
- Davide Zeppilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giacomo Grolla
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL), 35020 Legnaro (PD), Italy
| |
Collapse
|
3
|
Wenk D, Ignatchenko V, Macklin A, Hübner H, Gmeiner P, Weikert D, Pischetsrieder M, Kislinger T. Functionally selective activation of the dopamine receptor D 2 is mirrored by the protein expression profiles. Sci Rep 2021; 11:3501. [PMID: 33568753 PMCID: PMC7875989 DOI: 10.1038/s41598-021-83038-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The development of functionally selective or biased ligands is a promising approach towards drugs with less side effects. Biased ligands for G protein-coupled receptors can selectively induce G protein activation or β-arrestin recruitment. The consequences of this selective action on cellular functions, however, are not fully understood. Here, we investigated the impact of five biased and balanced dopamine D2 receptor agonists and antagonists on the global protein expression in HEK293T cells by untargeted nanoscale liquid chromatography-tandem mass spectrometry. The proteome analysis detected 5290 protein groups. Hierarchical clustering and principal component analysis based on the expression levels of 1462 differential proteins led to a separation of antagonists and balanced agonist from the control treatment, while the biased ligands demonstrated larger similarities to the control. Functional analysis of affected proteins revealed that the antagonists haloperidol and sulpiride regulated exocytosis and peroxisome function. The balanced agonist quinpirole, but not the functionally selective agonists induced a downregulation of proteins involved in synaptic signaling. The β-arrestin-preferring agonist BM138, however, regulated several proteins related to neuron function and the dopamine receptor-mediated signaling pathway itself. The G protein-selective partial agonist MS308 influenced rather broad functional terms such as DNA processing and mitochondrial translation.
Collapse
Affiliation(s)
- Deborah Wenk
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Dorothée Weikert
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
4
|
Pérez-Isidoro R, Costas M. The effect of neuroleptic drugs on DPPC/sphingomyelin/cholesterol membranes. Chem Phys Lipids 2020; 229:104913. [PMID: 32335028 DOI: 10.1016/j.chemphyslip.2020.104913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
The hydrophobic nature of neuroleptic drugs renders that these molecules interact not only with protein receptors, but also with the lipids constituting the membrane bilayer. We present a systematic study of the effect of seven neuroleptic drugs on a biomembrane model composed of DPPC, sphingomyelin, and cholesterol. Differential scanning calorimetry (DSC) measurements were used to monitor the gel-fluid phase transition of the lipid bilayer at three pH values and also as a function of drug concentration. The implementation of a new methodology to mix lipids homogeneously allowed us to assemble bilayers completely free of organic solvents. The seven neuroleptics were: trifluoperazine, haloperidol decanoate, clozapine, quetiapine, olanzapine, aripiprazole, and amisulpride. The DSC results show that the insertion of the drug into the bilayer produces a fluidization and a disordering of the bilayer. The bilayer perturbation is qualitatively the same for all the studied drugs, but quantitatively different. The driving force for the neuroleptic drug to place itself in the lipid bilayer is entropic in nature, signaling to the importance of the size and geometry of the drugs. The drug protonated species produce stronger effects than their non-protonated forms. At high concentrations two of the neuroleptics revert the fluidization effect and another completely abolishes the gel-fluid transition. The DSC data and the associated discussion contribute to the understanding of the interactions between neuroleptic drugs and lipid membranes.
Collapse
Affiliation(s)
- R Pérez-Isidoro
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| | - M Costas
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
5
|
Sekhar GN, Fleckney AL, Boyanova ST, Rupawala H, Lo R, Wang H, Farag DB, Rahman KM, Broadstock M, Reeves S, Thomas SA. Region-specific blood-brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer's disease. Fluids Barriers CNS 2019; 16:38. [PMID: 31842924 PMCID: PMC6915870 DOI: 10.1186/s12987-019-0158-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Research into amisulpride use in Alzheimer's disease (AD) implicates blood-brain barrier (BBB) dysfunction in antipsychotic sensitivity. Research into BBB transporters has been mainly directed towards the ABC superfamily, however, solute carrier (SLC) function in AD has not been widely studied. This study tests the hypothesis that transporters for organic cations contribute to the BBB delivery of the antipsychotics (amisulpride and haloperidol) and is disrupted in AD. METHODS The accumulation of [3H]amisulpride (3.7-7.7 nM) and [3H]haloperidol (10 nM) in human (hCMEC/D3) and mouse (bEnd.3) brain endothelial cell lines was explored. Computational approaches examined molecular level interactions of both drugs with the SLC transporters [organic cation transporter 1 (OCT1), plasma membrane monoamine transporter (PMAT) and multi-drug and toxic compound extrusion proteins (MATE1)] and amisulpride with the ABC transporter (P-glycoprotein). The distribution of [3H]amisulpride in wildtype and 3×transgenic AD mice was examined using in situ brain perfusion experiments. Western blots determined transporter expression in mouse and human brain capillaries . RESULTS In vitro BBB and in silico transporter studies indicated that [3H]amisulpride and [3H]haloperidol were transported by the influx transporter, OCT1, and efflux transporters MATE1 and PMAT. Amisulpride did not have a strong interaction with OCTN1, OCTN2, P-gp, BCRP or MRP and could not be described as a substrate for these transporters. Amisulpride brain uptake was increased in AD mice compared to wildtype mice, but vascular space was unaffected. There were no measurable changes in the expression of MATE1, MATE2, PMAT OCT1, OCT2, OCT3, OCTN1, OCTN2 and P-gp in capillaries isolated from whole brain homogenates from the AD mice compared to wildtype mice. Although, PMAT and MATE1 expression was reduced in capillaries obtained from specific human brain regions (i.e. putamen and caudate) from AD cases (Braak stage V-VI) compared to age matched controls (Braak stage 0-II). CONCLUSIONS Together our research indicates that the increased sensitivity of individuals with Alzheimer's to amisulpride is related to previously unreported changes in function and expression of SLC transporters at the BBB (in particular PMAT and MATE1). Dose adjustments may be required for drugs that are substrates of these transporters when prescribing for individuals with AD.
Collapse
Affiliation(s)
- Gayathri Nair Sekhar
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Alice L Fleckney
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Sevda Tomova Boyanova
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Huzefa Rupawala
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Rachel Lo
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Hao Wang
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Doaa B Farag
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
- Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt
| | - Khondaker Miraz Rahman
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Martin Broadstock
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, Camberwell, London, SE5 9N, UK
| | - Suzanne Reeves
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Sarah Ann Thomas
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK.
| |
Collapse
|