1
|
Carlucci R, Lisa MN, Labadie GR. 1,2,3-Triazoles in Biomolecular Crystallography: A Geometrical Data-Mining Approach. J Med Chem 2023; 66:14377-14390. [PMID: 37903297 DOI: 10.1021/acs.jmedchem.3c01097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The 1,2,3-triazole scaffold has become very attractive to identify new chemical entities in drug discovery projects. Despite the widespread use of click chemistry to synthesize numerous 123Ts, there are few drugs on the market that incorporate this scaffold as a substructure. To investigate the true potential of 123Ts in protein-ligand interactions, we examined the noncovalent interactions between the 1,2,3-triazole ring and amino acids in protein-ligand cocrystals using a geometrical approach. For this purpose, we constructed a nonredundant database of 220 PDB IDs from available 123T-protein cocrystal structures. Subsequently, using the Protein Ligand Interaction Profiler web platform (PLIP), we determined whether 1,2,3-triazoles primarily act as linkers or if they can be considered interactive scaffolds. We then manually analyzed the geometrical descriptors from 333 interactions between 1,4-disubstituted 123T rings and amino acid residues in proteins. This study demonstrates that 1,2,3-triazoles exhibit diverse preferred interactions with amino acids, which contribute to protein-ligand binding.
Collapse
Affiliation(s)
- Renzo Carlucci
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
- Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, ARGENTINA
| |
Collapse
|
2
|
Yue WK, Zhang T, Shandre Mugan R, Barlow N, Chalmers DK, Pouton CW, Thompson PE. Targeting Melanocortin Receptors Using S NAr-Type Macrocyclization: A Doubly Orthogonal Route to Cyclic Peptide Conjugates. J Med Chem 2023; 66:3273-3283. [PMID: 36808973 DOI: 10.1021/acs.jmedchem.2c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
While a range of strategies exist to accomplish peptide macrocyclization, they are frequently limited by the need for orthogonal protection or provide little opportunity for structural diversification. We have evaluated an efficient macrocyclization method that employs nucleophilic aromatic substitution (SNAr) to create thioether macrocycles. This versatile macrocyclization, orthogonal to conventional peptide synthesis, can be performed in solution on unprotected peptidomimetics or on resin-bound peptides with side-chain protection in place. We show that the electron-withdrawing groups present in the products can be further utilized in subsequent orthogonal reactions to alter the peptide properties or to add prosthetic groups. The macrocyclization strategy was applied to the design of melanocortin ligands, generating a library of potent melanocortin agonists that exhibit distinct subtype selectivity.
Collapse
Affiliation(s)
- Wenxiao K Yue
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tianxia Zhang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Rekha Shandre Mugan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Tomassi S, Dimmito MP, Cai M, D’Aniello A, Del Bene A, Messere A, Liu Z, Zhu T, Hruby VJ, Stefanucci A, Cosconati S, Mollica A, Di Maro S. CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists. J Med Chem 2022; 65:4007-4017. [DOI: 10.1021/acs.jmedchem.1c01848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Antonia D’Aniello
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Del Bene
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Zekun Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Tingyi Zhu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
5
|
Jakob V, Zoller BG, Rinkes J, Wu Y, Kiefer AF, Hust M, Polten S, White AM, Harvey PJ, Durek T, Craik DJ, Siebert A, Kazmaier U, Empting M. Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. Eur J Med Chem 2022; 231:114148. [DOI: 10.1016/j.ejmech.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|
6
|
Abstract
1,2,3-triazoles represent a functional heterocyclic core that has been at the center of modern organic chemistry since the beginning of click chemistry. Being a versatile framework, such an aromatic ring can be observed in uncountable molecules useful in medicine and photochemistry, just to name a few. This review summarizes the progress achieved in their synthesis from 2015 to today, with particular emphasis on the development of new catalytic and eco-compatible approaches. In doing so, we subdivided the report based on their degree of functionalization and, for each subparagraph, we outlined the role of the catalyst employed.
Collapse
|
7
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
8
|
De Rosa L, Capasso D, Diana D, Stefania R, Di Stasi R, Fattorusso R, D'Andrea LD. Metabolic and conformational stabilization of a VEGF-mimetic beta-hairpin peptide by click-chemistry. Eur J Med Chem 2021; 222:113575. [PMID: 34130005 DOI: 10.1016/j.ejmech.2021.113575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023]
Abstract
HPLW is a Vascular Endothelial Growth Factor (VEGF)-mimicking beta-hairpin peptide endowed of proangiogenic effect and showing valuable biomedical application in the proangiogenic therapy. However, the translational potential of HPLW is limited by its low metabolic stability, which would shorten the in vivo efficacy of the molecule. Here, we developed a peptide analog of HPLW, named HPLW2, that retains the structural and biological properties of the original peptide but features an impressive resistance to degradation by human serum proteases. HPLW2 was obtained by covalently modifying the chemical structure of the peptide with molecular tools known to impart protease resistance. Notably, the peptide was cyclized by installing an interstrand triazole bridge through Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reaction. HPLW2 appears as a novel and promising drug candidate with potential biomedical application in the proangiogenic therapy as a low molecular weight drug, alternative to the use of VEGF. Our work points out the utility of the interstrand triazole bridge as effective chemical platform for the conformational and metabolic stabilization of beta-hairpin bioactive peptides.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Domenica Capasso
- CESTEV, Università di Napoli "Federico II", Via De Amicis 95, 80134, Napoli, Italy; CIRPeB Università di Napoli "Federico II" Via Mezzocannone 16, 80134, Napoli, Italy
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Rachele Stefania
- Dipartimento di Biotecnologie Molecolari e Scienze per La Salute, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Roberto Fattorusso
- CIRPeB Università di Napoli "Federico II" Via Mezzocannone 16, 80134, Napoli, Italy; Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università Della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, Via M. Bianco 9, 20131, Milano, Italy.
| |
Collapse
|
9
|
Kandler R, Das S, Nag A. Copper-ligand clusters dictate size of cyclized peptide formed during alkyne-azide cycloaddition on solid support. RSC Adv 2021; 11:4842-4852. [PMID: 34377440 PMCID: PMC8351437 DOI: 10.1039/d0ra07491h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peptide and peptidomimetic cyclization by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction have been used to mimic disulfide bonds, alpha helices, amide bonds, and for one-bead-one-compound (OBOC) library development. A limited number of solid-supported CuAAC cyclization methods resulting in monomeric cyclic peptide formation have been reported for specific peptide sequences, but there exists no general study on monocyclic peptide formation using CuAAC cyclization. Since several cyclic peptides identified from an OBOC CuAAC cyclized library has been shown to have important biological applications, we discuss here an efficient method of alkyne-azide 'click' catalyzed monomeric cyclic peptide formation on a solid support. The reason behind the efficiency of the method is explored. CuAAC cyclization of a peptide sequence with azidolysine and propargylglycine is performed under various reaction conditions, with different catalysts, in the presence or absence of an organic base. The results indicate that piperidine plays a critical role in the reaction yield and monomeric cycle formation by coordinating to Cu and forming Cu-ligand clusters. A previously synthesized copper compound containing piperidine, [Cu4I4(pip)4], is found to catalyze the CuAAC cyclization of monomeric peptide effectively. The use of 1.5 equivalents of CuI and the use of DMF as solvent is found to give optimal CuAAC cyclized monomer yields. The effect of the peptide sequence and peptide length on monomer formation are also investigated by varying either parameter systemically. Peptide length is identified as the determining factor for whether the monomeric or dimeric cyclic peptide is the major product. For peptides with six, seven, or eight amino acids, the monomer is the major product from CuAAC cyclization. Longer and shorter peptides on cyclization show less monomer formation. CuAAC peptide cyclization of non-optimal peptide lengths such as pentamers is affected significantly by the amino acid sequence and give lower yields.
Collapse
Affiliation(s)
- Rene Kandler
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Samir Das
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| |
Collapse
|
10
|
Tomassi S, Trotta AM, Ieranò C, Merlino F, Messere A, Rea G, Santoro F, Brancaccio D, Carotenuto A, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Marinelli L, Scala S, Di Maro S. Disulfide Bond Replacement with 1,4‐ and 1,5‐Disubstituted [1,2,3]‐Triazole on C‐X‐C Chemokine Receptor Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chemistry 2020; 26:10113-10125. [DOI: 10.1002/chem.202002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Maria Trotta
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Caterina Ieranò
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Messere
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Giuseppina Rea
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Federica Santoro
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Diego Brancaccio
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Ettore Novellino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Sandro Cosconati
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Luciana Marinelli
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Stefania Scala
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Salvatore Di Maro
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
11
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin‐2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Claudia E. Murar
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Ufuk Karakus
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Onur Boyman
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
12
|
White AM, Veer SJ, Wu G, Harvey PJ, Yap K, King GJ, Swedberg JE, Wang CK, Law RHP, Durek T, Craik DJ. Application and Structural Analysis of Triazole‐Bridged Disulfide Mimetics in Cyclic Peptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew M. White
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Simon J. Veer
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Guojie Wu
- ARC Centre of Excellence in Advanced Molecular Imaging Department of Biochemistry and Molecular Biology Biomedicine Discovery Institute Monash University Clayton VIC 3800 Australia
| | - Peta J. Harvey
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Kuok Yap
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Gordon J. King
- The Centre for Microscopy and Microanalysis The University of Queensland Brisbane QLD 4072 Australia
| | - Joakim E. Swedberg
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Conan K. Wang
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Ruby H. P. Law
- ARC Centre of Excellence in Advanced Molecular Imaging Department of Biochemistry and Molecular Biology Biomedicine Discovery Institute Monash University Clayton VIC 3800 Australia
| | - Thomas Durek
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David J. Craik
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
13
|
White AM, Veer SJ, Wu G, Harvey PJ, Yap K, King GJ, Swedberg JE, Wang CK, Law RHP, Durek T, Craik DJ. Application and Structural Analysis of Triazole‐Bridged Disulfide Mimetics in Cyclic Peptides. Angew Chem Int Ed Engl 2020; 59:11273-11277. [DOI: 10.1002/anie.202003435] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Andrew M. White
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Simon J. Veer
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Guojie Wu
- ARC Centre of Excellence in Advanced Molecular Imaging Department of Biochemistry and Molecular Biology Biomedicine Discovery Institute Monash University Clayton VIC 3800 Australia
| | - Peta J. Harvey
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Kuok Yap
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Gordon J. King
- The Centre for Microscopy and Microanalysis The University of Queensland Brisbane QLD 4072 Australia
| | - Joakim E. Swedberg
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Conan K. Wang
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Ruby H. P. Law
- ARC Centre of Excellence in Advanced Molecular Imaging Department of Biochemistry and Molecular Biology Biomedicine Discovery Institute Monash University Clayton VIC 3800 Australia
| | - Thomas Durek
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David J. Craik
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
14
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin-2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020; 59:8425-8429. [PMID: 32032465 DOI: 10.1002/anie.201916053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Chemical protein synthesis allows the construction of well-defined structural variations and facilitates the development of deeper understanding of protein structure-function relationships and new protein engineering strategies. Herein, we report the chemical synthesis of interleukin-2 (IL-2) variants on a multimilligram scale and the formation of non-natural disulfide mimetics that improve stability against reduction. The synthesis was accomplished by convergent KAHA ligations; the acidic conditions of KAHA ligation proved to be valuable for the solubilization of the hydrophobic segments of IL-2. The bioactivity of the synthetic IL-2 and its analogues were shown to be equipotent to recombinant IL-2 and exhibit improved stability against reducing agents.
Collapse
Affiliation(s)
- Claudia E Murar
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Ufuk Karakus
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
15
|
Schilling PE, Kontaxis G, Dragosits M, Schiestl RH, Becker CFW, Maier I. Mannosylated hemagglutinin peptides bind cyanovirin-N independent of disulfide-bonds in complementary binding sites. RSC Adv 2020; 10:11079-11087. [PMID: 35495330 PMCID: PMC9050506 DOI: 10.1039/d0ra01128b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
Cyanovirin-N (CV-N) has been shown to reveal broad neutralizing activity against human immunodeficiency virus (HIV) and to specifically bind Manα(1→2)Manα units exposed on various glycoproteins of enveloped viruses, such as influenza hemagglutinin (HA) and Ebola glycoprotein. Chemically synthesized dimannosylated HA peptides bound domain-swapped and dimeric CV-N with either four disulfide-bonds (Cys-Cys), or three Cys-Cys bonds and an intact fold of the high-affinity binding site at an equilibrium dissociation constant K D of 10 μM. Cys-Cys mutagenesis with ion-pairing amino-acids glutamic acid and arginine was calculated by in silico structure-based protein design and allowed for recognizing dimannose and dimannosylated peptide binding to low-affinity binding sites (K D ≈ 11 μM for one C58-C73 bond, and binding to dimannosylated peptide). In comparison, binding to HA was achieved based on one ion-pairing C58E-C73R substitution at K D = 275 nM, and K D = 5 μM for two C58E-C73R substitutions. We were utilizing a triazole bioisostere linkage to form the respective mannosylated-derivative on the HA peptide sequence of residues glutamine, glycine, and glutamic acid. Thus, mono- and dimannosylated peptides with N-terminal cysteine facilitated site-specific interactions with HA peptides, mimicking a naturally found N-linked glycosylation site on the HA head domain.
Collapse
Affiliation(s)
- Philipp E Schilling
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna Campus Vienna Bohrgasse 5 A-1030 Vienna Austria
| | - Martin Dragosits
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences Muthgasse 18 A-1190 Vienna Austria
| | - Robert H Schiestl
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine, University of California Los Angeles CA-90095 USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles 650 Charles E. Young Dr. South Los Angeles CA-90095 USA +1-310-267-2578 +1-310-267-2087
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
| | - Irene Maier
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles 650 Charles E. Young Dr. South Los Angeles CA-90095 USA +1-310-267-2578 +1-310-267-2087
| |
Collapse
|
16
|
Fabrication of chitosan based magnetic nanocomposite by click reaction strategy; evaluation of nanometric and cytotoxic characteristics. Carbohydr Polym 2019; 224:115163. [DOI: 10.1016/j.carbpol.2019.115163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
|
17
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User-friendly Stapling Reaction. Angew Chem Int Ed Engl 2019; 58:14120-14124. [PMID: 31211905 DOI: 10.1002/anie.201906514] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/14/2022]
Abstract
The stabilization of peptide secondary structure via stapling is a ubiquitous goal for creating new probes, imaging agents, and drugs. Inspired by indole-derived crosslinks found in natural peptide toxins, we employed ortho-phthalaldehydes to create isoindole staples, thus transforming inactive linear and monocyclic precursors into bioactive monocyclic and bicyclic products. Mild, metal-free conditions give an array of macrocyclic α-melanocyte-stimulating hormone (α-MSH) derivatives, of which several isoindole-stapled α-MSH analogues (Ki ≈1 nm) are found to be as potent as α-MSH. Analogously, late-stage intra-annular isoindole stapling furnished a bicyclic peptide mimic of α-amanitin that is cytotoxic to CHO cells (IC50 =70 μm). Given its user-friendliness, we have termed this approach FlICk (fluorescent isoindole crosslink) chemistry.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Katerina D Schwab
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Jutta Zeisler
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| |
Collapse
|
18
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User‐friendly Stapling Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| | | | - Jutta Zeisler
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - David M. Perrin
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| |
Collapse
|
19
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
20
|
Fleming KA, Freeman KT, Powers MD, Santos RG, Debevec G, Giulianotti MA, Houghten RA, Doering SR, Pinilla C, Haskell-Luevano C. Discovery of Polypharmacological Melanocortin-3 and -4 Receptor Probes and Identification of a 100-Fold Selective nM MC3R Agonist versus a μM MC4R Partial Agonist. J Med Chem 2019; 62:2738-2749. [PMID: 30741545 PMCID: PMC6463894 DOI: 10.1021/acs.jmedchem.9b00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R, respectively) are established targets to treat diseases of positive- and negative-energy homeostasis. We previously reported [ Doering , S. R. ; J. Med. Chem. 2017 , 60 , 4342 - 4357 ] mixture-based positional scanning approaches to identify dual MC3R agonist and MC4R antagonist tetrapeptides. Herein, 46 tetrapeptides were chosen for MC3R agonist screening selectivity profiles, synthesized, and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. Substitutions to the tetrapeptide template were selected solely based on MC3R agonist potency from the mixture-based screen. This study resulted in the discovery of compound 42 (Ac-Val-Gln-(pI)DPhe-DTic-NH2), a full MC3R agonist that is 100-fold selective for the MC3R over the μM MC4R partial agonist pharmacology. This compound represents a first-in-class MC3R selective agonist. This ligand will serve as a useful in vivo molecular probe for the investigation of the roles of the MC3R and MC4R in diseases of dysregulated energy homeostasis.
Collapse
Affiliation(s)
- Katlyn A. Fleming
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Mike D. Powers
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Radleigh G. Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Skye R. Doering
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Clemencia Pinilla
- To whom correspondence about the use of positional scanning libraries should be addressed at at Torrey Pines Institute for Molecular Studies
| | - Carrie Haskell-Luevano
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Kumar MS. Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Front Nutr 2019; 6:11. [PMID: 30834248 PMCID: PMC6388543 DOI: 10.3389/fnut.2019.00011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
There is a high occurrence of obesity worldwide without many new medications being approved for its treatment. Therefore, there is an urgent need to introduce new approaches for treating obesity. Bioactive peptides have been used to treat metabolic disorders- such as type-2 diabetes and obesity; while also possessing anti-oxidant, anti-inflammatory, anti-microbial, and anti-viral properties. However, the development of these peptides has taken backstage due to their size, reduced stability, poor delivery and bioavailability, fast rate of degradation etc. But with the emergence of newer techniques for multifunctional peptides, mimetics, peptide analogs, and aptamers, there is a sudden revival in this therapeutic field. An increased attention is required for development of the natural peptides from food and marine sources which can mimic the function of mediators involved in weight management to avoid obesity. Herein, the search for the structures of anti-obesity peptides was carried out in order to establish their potential for drug development in future. An extensive search for the current status of endogenous, food and marine peptides, with reference to novel and interesting experimental approaches based on peptidomimetics for controlling obesity, was performed. Apolipoprotein A-I (apoA-I), melanocortin-4 receptor (MC4R)-specific agonist, GLP-1 dual and triple agonists, neuropeptides and prolactin-releasing peptide mimetics were specifically examined for their anti-obesity role. Novel peptides, mimetics, and synthesis interventions are transpiring and might offer safer alternatives for otherwise scarcely available safe antiobesity drug. A deeper understanding of peptides and their chemistry through the use of peptide engineering can be useful to overcome the disadvantages and select best mimetics and analogs for treatment in future.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies-NMIMS, Mumbai, India
| |
Collapse
|