1
|
Saferin N, Haseeb I, Taha AM, Beecroft SE, Pillai S, Neifer AE, Lakkuru R, Kistler BP, Nawor CN, Malik I, Hasan D, Carlson JA, Zade KK, Dressel SP, Carney EM, Shah R, Gautam S, Vergis J, Neifer KL, Johnson ZV, Gustison ML, Hall FS, Burkett JP. Folate prevents the autism-related phenotype caused by developmental pyrethroid exposure in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625285. [PMID: 39651146 PMCID: PMC11623627 DOI: 10.1101/2024.11.25.625285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Neurodevelopmental disorders (NDDs) have dramatically increased in prevalence to an alarming one in six children, and yet both causes and preventions remain elusive. Recent human epidemiology and animal studies have implicated developmental exposure to pyrethroid pesticides, one of the most common classes of pesticides in the US, as an environmental risk factor for autism and neurodevelopmental disorders. Our previous research has shown that low-dose chronic developmental pyrethroid exposure (DPE) changes folate metabolites in the adult mouse brain. We hypothesize that DPE acts directly on molecular targets in the folate metabolism pathway, and that high-dose maternal folate supplementation can prevent or reduce the biobehavioral effects of DPE. We exposed pregnant prairie vole dams chronically to vehicle or low-dose deltamethrin (3 mg/kg/3 days) with or without high-dose folate supplementation (methylfolate, 5 mg/kg/3 days). The resulting DPE offspring showed broad deficits in five behavioral domains relevant to neurodevelopmental disorders (including the social domain); increased plasma folate concentrations; and increased neural expression of SHMT1, a folate cycle enzyme. Maternal folate supplementation prevented most of the behavioral phenotypes (except for repetitive behaviors) and caused potentially compensatory changes in neural expression of FOLR1 and MTHFR, two folate-related proteins. We conclude that DPE causes neurodevelopmental disorder-relevant behavioral deficits; DPE directly alters aspects of folate metabolism; and preventative interventions targeting folate metabolism are effective in reducing, but not eliminating, the behavioral effects of DPE.
Collapse
Affiliation(s)
- Nilanjana Saferin
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ibrahim Haseeb
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Adam M. Taha
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sarah E. Beecroft
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sangeetha Pillai
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Asha E. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Rudhasri Lakkuru
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Brian P. Kistler
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Charlotte N. Nawor
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Isa Malik
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Dena Hasan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jonathan A. Carlson
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kareem K. Zade
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sydnee P. Dressel
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Eileen M. Carney
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Radha Shah
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Shudhant Gautam
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - John Vergis
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kari L. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Zachary V. Johnson
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Morgan L. Gustison
- Department of Psychology, The University of Western Ontario, London, ON, Canada (current); Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - F. Scott Hall
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - James P. Burkett
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
2
|
Denney KA, Wu MV, Sun SED, Moon S, Tollkuhn J. Comparative analysis of gonadal hormone receptor expression in the postnatal house mouse, meadow vole, and prairie vole brain. Horm Behav 2024; 158:105463. [PMID: 37995608 PMCID: PMC11145901 DOI: 10.1016/j.yhbeh.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The socially monogamous prairie vole (Microtus ochrogaster) and promiscuous meadow vole (Microtus pennsylvanicus) are closely related, but only prairie voles display long-lasting pair bonds, biparental care, and selective aggression towards unfamiliar individuals after pair bonding. These social behaviors in mammals are largely mediated by steroid hormone signaling in the social behavior network (SBN) of the brain. Hormone receptors are reproducible markers of sex differences that can provide more information than anatomy alone and can even be at odds with anatomical dimorphisms. We reasoned that behaviors associated with social monogamy in prairie voles may emerge in part from unique expression patterns of steroid hormone receptors in this species, and that these expression patterns would be more similar across males and females in prairie than in meadow voles or the laboratory mouse. To obtain insight into steroid hormone signaling in the developing prairie vole brain, we assessed expression of estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), and androgen receptor (Ar) within the SBN, using in situ hybridization at postnatal day 14 in mice, meadow, and prairie voles. We found species-specific patterns of hormone receptor expression in the hippocampus and ventromedial hypothalamus, as well as species differences in the sex bias of these markers in the principal nucleus of the bed nucleus of the stria terminalis. These findings suggest the observed differences in gonadal hormone receptor expression may underlie species differences in the display of social behaviors.
Collapse
Affiliation(s)
- Katherine A Denney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA
| | - Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Soyoun Moon
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Verga L, Kotz SA, Ravignani A. The evolution of social timing. Phys Life Rev 2023; 46:131-151. [PMID: 37419011 DOI: 10.1016/j.plrev.2023.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals.
Collapse
Affiliation(s)
- Laura Verga
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Prior NH, Haakenson CM, Clough S, Ball GF, Sandkam BA. Varied impacts of social relationships on neuroendocrine state. Horm Behav 2023; 155:105403. [PMID: 37678093 DOI: 10.1016/j.yhbeh.2023.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023]
Abstract
Social relationships, affiliative social attachments, are important for many species. The best studied types of relationships are monogamous pair bonds. However, it remains unclear how generalizable models of pair bonding are across types of social attachments. Zebra finches are a fascinating system to explore the neurobiology of social relationships because they form various adult bonds with both same- and opposite-sex partners. To test whether different bonds are supported by a single brain network, we quantified individuals' neuroendocrine state after either 24 h or 2 weeks of co-housing with a novel same- or opposite-sex partner. We defined neuroendocrine state by the expression of 22 genes related to 4 major signaling pathways (dopamine, steroid, nonapeptide, and opioid) in six brain regions associated with affiliation or communication [nucleus accumbens (NAc), nucleus taeniae of the amygdala (TnA), medial preoptic area (POM), and periaqueductal gray (PAG), ventral tegmental area, and auditory cortex]. Overall, we found dissociable effects of social contexts (same- or opposite-sex partnerships) and duration of co-housing. Social bonding impacted the neuroendocrine state of four regions in males (NAc, TnA, POM, and PAG) and three regions in females (NAc, TnA, and POM). Monogamous pair bonding specifically appeared to impact male NAc. However, the patterns of gene expression in zebra finches were different than has previously been reported in mammals. Together, our results support the view that there are numerous mechanisms regulating social relationships and highlight the need to further our understanding of how social interactions shape social bonds.
Collapse
Affiliation(s)
- Nora H Prior
- Department of Psychology, Cornell University, Ithaca, NY, United States of America.
| | - Chelsea M Haakenson
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Savannah Clough
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Gregory F Ball
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
5
|
Swain CC, Wischmeier JN, Neifer AE, Lloyd EAR, Neifer KL, Kile KB, Burkett JP. Hereditary convulsions in an outbred prairie vole line. Epilepsy Res 2023; 195:107202. [PMID: 37540927 PMCID: PMC10529651 DOI: 10.1016/j.eplepsyres.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Patients with epilepsy are significantly burdened by the disease due to long-term health risks, the severe side effect profiles of anti-epileptic drugs, and the strong possibility of pharmacoresistant refractory seizures. New animal models of epilepsy with unique characteristics promise to further research to address these ongoing problems. Here, we characterize a newly developed line of prairie voles (Microtus ochrogaster, UTol:HIC or "Toledo" line) that presents with a hereditary, adult-onset, handling-induced convulsion phenotype. Toledo voles were bred for four generations and tested to determine whether the observed phenotype was consistent with epileptic seizures. Toledo voles maintained a stable 22 % incidence of convulsions across generations, with an average age of onset of 12-16 weeks. Convulsions in Toledo voles were reliably evoked by rodent seizure screens and were phenotypically consistent with murine seizures. At the colony level, Toledo voles had a 7-fold increase in risk for sudden unexpected death from unknown causes, which parallels sudden unexpected death in epilepsy (SUDEP) in human patients. Finally, convulsions in Toledo voles were reduced or prevented by treatment with the anti-epileptic drug levetiracetam. Taken in combination, these results suggest that convulsions in Toledo voles may be epileptic seizures. The Toledo prairie vole strain may serve as a new rodent model of epilepsy in an undomesticated, outbred species.
Collapse
Affiliation(s)
- Caroline C Swain
- University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - James N Wischmeier
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - Asha E Neifer
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | | | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kara B Kile
- Department of Physics, University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - James P Burkett
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| |
Collapse
|
6
|
Forti LR, Szabo JK, Japyassú HF. Host manipulation by parasites through the lens of Niche Construction Theory. Behav Processes 2023:104907. [PMID: 37352944 DOI: 10.1016/j.beproc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The effect of parasites on host behaviour is generally considered an example of the extended phenotype, implying that parasite genes alter host behaviour to benefit the parasite. While the extended phenotype is a valid perspective supported by empirical examples, this approach was proposed from an evolutionary perspective and it does not fully explain all processes that occur at ecological time scales. For instance, the roles of the ontogenetic environment, memory and learning in forming the host phenotype are not explicitly mentioned. Furthermore, the cumulative effect of diverse populations or communities of parasites on host phenotype cannot be attributed to a particular genotype, much less to a particular gene. Building on the idea that the behaviour of a host is the result of a complex process, which certainly goes beyond a specific parasite gene, we use Niche Construction Theory to describe certain systems that are not generally the main focus in the extended phenotype (EP) model. We introduce three niche construction models with corresponding empirical examples that capture the diversity and complexity of host-parasite interactions, providing predictions that simpler models cannot generate. We hope that this novel perspective will inspire further research on the topic, given the impact of ecological factors on both short-, and long-term effects of parasitism.
Collapse
Affiliation(s)
- Lucas Rodriguez Forti
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; Departamento de Biociências, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572 - Bairro Costa e Silva, 59625-900, Mossoró - Rio Grande do Norte, Brazil.
| | - Judit K Szabo
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; College of Engineering, IT and Environment, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| | - Hilton F Japyassú
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; INCT-INTREE: Instituto Nacional de Ciência e Tecnologia para estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução, Universidade Federal da Bahia
| |
Collapse
|
7
|
Fradin D, Tost J, Busato F, Mille C, Lachaux F, Deleuze JF, Apter G, Benachi A. DNA methylation dynamics during pregnancy. Front Cell Dev Biol 2023; 11:1185311. [PMID: 37287456 PMCID: PMC10242503 DOI: 10.3389/fcell.2023.1185311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.
Collapse
Affiliation(s)
- Delphine Fradin
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jorg Tost
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Florence Busato
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Clémence Mille
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Fanny Lachaux
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Gisèle Apter
- Child and Perinatal Psychiatric Department, Le Havre University Hospital, University Rouen Normandie, Le Havre, France
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology, DMU Santé des Femmes et des Nouveau-nés, Assistance Publique Hôpitaux de Paris, Antoine Beclere Hospital, Université Paris-Saclay, Paris, France
| |
Collapse
|
8
|
Hiura LC, Donaldson ZR. Prairie vole pair bonding and plasticity of the social brain. Trends Neurosci 2023; 46:260-262. [PMID: 36369029 PMCID: PMC10389078 DOI: 10.1016/j.tins.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
In monogamous species, pair bonding leads to striking changes in social behavior and neural circuitry. We outline the cognitive building blocks of monogamous pair bonding in prairie voles (Microtus ochrogaster), as well as opportunities afforded by the species to investigate diverse mechanisms underlying social experience-dependent plasticity and gain insights into the neurobiology of complex social behavior more generally.
Collapse
Affiliation(s)
- Lisa C Hiura
- Department of Molecular, Cellular, and Developmental Biology, Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
9
|
Singh MK, Nimarko A, Bruno J, Anand KJS, Singh SP. Can Translational Social Neuroscience Research Offer Insights to Mitigate Structural Racism in the United States? BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1258-1267. [PMID: 35609781 PMCID: PMC11611498 DOI: 10.1016/j.bpsc.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
Abstract
Social isolation and conflict due to structural racism may result in human suffering and loneliness across the life span. Given the rising prevalence of these problems in the United States, combined with disruptions experienced during the COVID-19 pandemic, the neurobiology of affiliative behaviors may offer practical solutions to the pressing challenges associated with structural racism. Controlled experiments across species demonstrate that social connections are critical to survival, although strengthening individual resilience is insufficient to address the magnitude and impact of structural racism. In contrast, the multilevel construct of social resilience, defined by the power of groups to cultivate, engage in, and sustain positive relationships that endure and recuperate from social adversities, offers unique insights that may have greater impact, reach, and durability than individual-level interventions. Here, we review putative social resilience-enhancing interventions and, when available, their biological mediators, with the hope to stimulate discovery of novel approaches to mitigate structural racism. We first explore the social neuroscience principles underlying psychotherapy and other psychiatric interventions. Then, we explore translational efforts across species to tailor treatments that increase social resilience, with context and cultural sensitivity in mind. Finally, we conclude with some practical future directions for understudied areas that may be essential for progress in biological psychiatry, including ethical ways to increase representation in research and developing social paradigms that inform dynamics toward or away from socially resilient outcomes.
Collapse
Affiliation(s)
- Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| | - Akua Nimarko
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Jennifer Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Kanwaljeet J S Anand
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Swaran P Singh
- Centre of Mental Health and Wellbeing Research, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
O'Connor MF, Seeley SH. Grieving as a form of learning: Insights from neuroscience applied to grief and loss. Curr Opin Psychol 2022; 43:317-322. [PMID: 34520954 PMCID: PMC8858332 DOI: 10.1016/j.copsyc.2021.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Recent grief research suggests that the influential cognitive stress theory should be updated with evidence from cognitive neuroscience. Combining human and animal neuroscience with attachment theory, we propose that semantic knowledge of the everlasting nature of the attachment figure and episodic, autobiographical memories of the death are in conflict, perhaps explaining the duration of grieving and generating predictions about complications in prolonged grief disorder (PGD). Our gone-but-also-everlasting model emphasizes that grieving may be a form of learning, requiring time and experiential feedback. Difficulties before loss, such as spousal dependency or pre-existing hippocampal volume, can prolong learning and predict PGD. Complications such as avoidance, rumination, and stress-induced hippocampal atrophy may also develop after loss and create functional or structural mechanisms predicting PGD.
Collapse
Affiliation(s)
| | - Saren H Seeley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Warren MR, Campbell D, Borie AM, Ford CL, Dharani AM, Young LJ, Liu RC. Maturation of Social-Vocal Communication in Prairie Vole ( Microtus ochrogaster) Pups. Front Behav Neurosci 2022; 15:814200. [PMID: 35087387 PMCID: PMC8787284 DOI: 10.3389/fnbeh.2021.814200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Impairments in social communication are common among neurodevelopmental disorders. While traditional animal models have advanced our understanding of the physiological and pathological development of social behavior, they do not recapitulate some aspects where social communication is essential, such as biparental care and the ability to form long-lasting social bonds. Prairie voles (Microtus ochrogaster) have emerged as a valuable rodent model in social neuroscience because they naturally display these behaviors. Nonetheless, the role of vocalizations in prairie vole social communication remains unclear. Here, we studied the ontogeny [from postnatal days (P) 8-16] of prairie vole pup ultrasonic vocalizations (USVs), both when isolated and when the mother was present but physically unattainable. In contrast to other similarly sized rodents such as mice, prairie vole pups of all ages produced isolation USVs with a relatively low fundamental frequency between 22 and 50 kHz, often with strong harmonic structure. Males consistently emitted vocalizations with a lower frequency than females. With age, pups vocalized less, and the acoustic features of vocalizations (e.g., duration and bandwidth) became more stereotyped. Manipulating an isolated pup's social environment by introducing its mother significantly increased vocal production at older (P12-16) but not younger ages, when pups were likely unable to hear or see her. Our data provide the first indication of a maturation in social context-dependent vocal emission, which may facilitate more active acoustic communication. These results help lay a foundation for the use of prairie voles as a model organism to probe the role of early life experience in the development of social-vocal communication.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Drayson Campbell
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Amélie M. Borie
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar M. Dharani
- Summer Opportunities of Academic Research Program, James T. Laney School of Graduate Studies, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
12
|
Welfare of encaged rodents: Species specific behavioral reaction of voles to new enrichment items. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Fogel AS, McLean EM, Gordon JB, Archie EA, Tung J, Alberts SC. Genetic ancestry predicts male-female affiliation in a natural baboon hybrid zone. Anim Behav 2021; 180:249-268. [PMID: 34866638 PMCID: PMC8635413 DOI: 10.1016/j.anbehav.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Opposite-sex social relationships are important predictors of fitness in many animals, including several group-living mammals. Consequently, understanding sources of variance in the tendency to form opposite-sex relationships is important for understanding social evolution. Genetic contributions are of particular interest due to their importance in long-term evolutionary change, but little is known about genetic effects on male-female relationships in social mammals, especially outside of the mating context. Here, we investigate the effects of genetic ancestry on male-female affiliative behaviour in a hybrid zone between the yellow baboon, Papio cynocephalus, and the anubis baboon, Papio anubis, in a population in which male-female social bonds are known predictors of life span. We place our analysis within the context of other social and demographic predictors of affiliative behaviour in baboons. Genetic ancestry was the most consistent predictor of opposite-sex affiliative behaviour we observed, with the exception of strong effects of dominance rank. Our results show that increased anubis genetic ancestry is associated with a subtle, but significantly higher, probability of opposite-sex affiliative behaviour, in both males and females. Additionally, pairs of anubis-like males and anubis-like females were the most likely to socially affiliate, resulting in moderate assortativity in grooming and proximity behaviour as a function of genetic ancestry. Our findings indicate that opposite-sex affiliative behaviour partially diverged during baboon evolution to differentiate yellow and anubis baboons, despite overall similarities in their social structures and mating systems. Furthermore, they suggest that affiliative behaviour may simultaneously promote and constrain baboon admixture, through additive and assortative effects of ancestry, respectively.
Collapse
Affiliation(s)
- Arielle S. Fogel
- University Program in Genetics and Genomics, Duke University, Durham, NC, U.S.A
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
| | - Emily M. McLean
- University Program in Genetics and Genomics, Duke University, Durham, NC, U.S.A
- Department of Biology, Duke University, Durham, NC, U.S.A
- Division of Natural Sciences and Mathematics, Oxford College of Emory University, Oxford, GA, U.S.A
| | | | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
- Department of Biology, Duke University, Durham, NC, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Duke Population Research Institute, Duke University, Durham, NC, U.S.A
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
- Department of Biology, Duke University, Durham, NC, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
14
|
Demarchi L, Pawluski JL, Bosch OJ. The brain oxytocin and corticotropin-releasing factor systems in grieving mothers: What we know and what we need to learn. Peptides 2021; 143:170593. [PMID: 34091013 DOI: 10.1016/j.peptides.2021.170593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
The bond between a mother and her child is the strongest bond in nature. Consequently, the loss of a child is one of the most stressful and traumatic life events that causes Prolonged Grief Disorder in up to 94 % of bereaved parents. While both parents are affected, mothers are of higher risk to develop mental health complications; yet, very little research has been done to understand the impact of the loss of a child, stillbirth and pregnancy loss on key neurobiological systems. The emotional impact of losing a child, e.g., Prolonged Grief Disorder, is likely accompanied by dysregulations in neural systems important for mental health. Among those are the neuropeptides contributing to attachment and stress processing. In this review, we present evidence for the involvement of the brain oxytocin (OXT) and corticotropin-releasing factor (CRF) systems, which both play a role in maternal behavior and the stress response, in the neurobiology of grief in mothers from a behavioral and molecular point of view. We will draw conclusions from reviewing relevant animal and human studies. However, the paucity of research on the tragic end to an integral bond in a female's life calls for the need and responsibility to conduct further studies on mothers experiencing the loss of a child both in the clinic and in appropriate animal models.
Collapse
Affiliation(s)
- Luisa Demarchi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085 Rennes, France.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
15
|
Lambert CT, Lichter JB, Perry AN, Castillo SA, Keane B, Cushing BS, Solomon NG. Medial amygdala ERα expression influences monogamous behaviour of male prairie voles in the field. Proc Biol Sci 2021; 288:20210318. [PMID: 34344176 PMCID: PMC8334872 DOI: 10.1098/rspb.2021.0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Formation of long-term pair-bonds is a complex process, involving multiple neural circuits and is context- and experience-dependent. While laboratory studies using prairie voles have identified the involvement of several neural mechanisms, efforts to translate these findings into predictable field outcomes have been inconsistent at best. Here we test the hypothesis that inhibition of oestrogen receptor alpha (ERα) in the medial amygdala of male prairie voles would significantly increase the expression of social monogamy in the field. Prairie vole populations of equal sex ratio were established in outdoor enclosures with males bred for high levels of ERα expression and low levels of prosocial behaviour associated with social monogamy. Medial amygdala ERα expression was knocked down in half the males per population. Knockdown males displayed a greater degree of social monogamy in five of the eight behavioural indices assessed. This study demonstrates the robust nature of ERα in playing a critical role in the expression of male social monogamy in a field setting.
Collapse
Affiliation(s)
| | | | - Adam N. Perry
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Samuel A. Castillo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian Keane
- Department of Biological Sciences, Miami University—Regionals, Hamilton, OH 45011, USA
| | - Bruce S. Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
16
|
Kelly AM, Ong JY, Witmer RA, Ophir AG. Paternal deprivation impairs social behavior putatively via epigenetic modification to lateral septum vasopressin receptor. SCIENCE ADVANCES 2020; 6:eabb9116. [PMID: 32917597 PMCID: PMC7467705 DOI: 10.1126/sciadv.abb9116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
Although it is well appreciated that the early-life social environment asserts subsequent long-term consequences on offspring brain and behavior, the specific mechanisms that account for this relationship remain poorly understood. Using a novel assay that forced biparental pairs or single mothers to prioritize caring for offspring or themselves, we investigated the impact of parental variation on adult expression of nonapeptide-modulated behaviors in prairie voles. We demonstrated that single mothers compensate for the lack of a co-parent. Moreover, mothers choose to invest in offspring over themselves when faced with a tradeoff, whereas fathers choose to invest in themselves. Furthermore, our study suggests a pathway whereby variation in parental behavior (specifically paternal care) may lead to alterations in DNA methylation within the vasopressin receptor 1a gene and gene expression in the lateral septum. These differences are concomitant with changes in social approach, a behavior closely associated with septal vasopressin receptor function.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Jie Yuen Ong
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Ruth A Witmer
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Yan L, Sun X, Wang Z, Song M, Zhang Z. Regulation of social behaviors by p-Stat3 via oxytocin and its receptor in the nucleus accumbens of male Brandt's voles (Lasiopodomys brandtii). Horm Behav 2020; 119:104638. [PMID: 31765660 DOI: 10.1016/j.yhbeh.2019.104638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 02/02/2023]
Abstract
Social behavior plays a significant role in the formation of social structure and population regulation in both animals and humans. Oxytocin (OXT) and its receptor (OXTR) are well known for regulating social behaviors, but their upstream regulating factors are rarely investigated. We hypothesized that the phosphorylation of the signal transducer and activator of transcription 3 (p-Stat3) may regulate social and aggressive behaviors via the OXT system in the nucleus accumbens (NAc). To test this hypothesis, OXT, p-Stat3 inhibitor, OXTR antagonist, and OXT plus p-Stat3 inhibitor were infused, respectively, into the NAc in the brain of male Brandt's voles (Lasiopodomys brandtii) - a social rodent species in grassland of Inner Mongolia, China. Our data showed that blockage of p-Stat3-Tyr705 signaling pathway in the NAc not only increased aggressive behavior but also impaired social recognition of male Brandt's voles via its effects on the expression of local OXT and OXTR. These results have illustrated a novel signaling pathway of p-Stat3-Tyr705 in regulating social behaviors via the OXT system.
Collapse
Affiliation(s)
- Lixin Yan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Xiuping Sun
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Mingjing Song
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Goodwin NL, Lopez SA, Lee NS, Beery AK. Comparative role of reward in long-term peer and mate relationships in voles. Horm Behav 2019; 111:70-77. [PMID: 30528833 PMCID: PMC6527457 DOI: 10.1016/j.yhbeh.2018.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
This is a contribution to SI: SBN/ICN meeting. In social species, relationships may form between mates, parents and their offspring, and/or social peers. Prairie voles and meadow voles both form selective relationships for familiar same-sex peers, but differ in mating system, allowing comparison of the properties of peer and mate relationships. Prairie vole mate bonds are dopamine-dependent, unlike meadow vole peer relationships, indicating potential differences in the mechanisms and motivation supporting these relationships within and/or across species. We review the role of dopamine signaling in affiliative behavior, and assess the role of behavioral reward across relationship types. We compared the reinforcing properties of mate versus peer relationships within a species (prairie voles), and peer relationships across species (meadow and prairie voles). Social reinforcement was assessed using the socially conditioned place preference test. Animals were conditioned using randomly assigned, equally preferred beddings associated with social (CS+) and solitary (CS-) housing. Prairie vole mates, but not prairie or meadow vole peers, conditioned toward the social cue. A second study in peers used counter-conditioning to enhance the capacity to detect low-level conditioning. Time spent on CS+ bedding significantly decreased in meadow voles, and showed a non-significant increase in prairie voles. These data support the conclusion that mate relationships are rewarding for prairie voles. Despite selectivity of preferences for familiar individuals in partner preference tests, peer relationships in both species appear only weakly reinforcing or non-reinforcing. This suggests important differences in the pathways underlying these relationship types, even within species.
Collapse
Affiliation(s)
- Nastacia L Goodwin
- Department of Psychology, Smith College, Northampton, MA 01063, United States of America
| | - Sarah A Lopez
- Neuroscience Program, Smith College, Northampton, MA 01063, United States of America
| | - Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Annaliese K Beery
- Department of Psychology, Smith College, Northampton, MA 01063, United States of America; Neuroscience Program, Smith College, Northampton, MA 01063, United States of America; Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America.
| |
Collapse
|