1
|
Shi X, Hu C, Jiang Y, Guo B, Tang C, Zhang B, Wang F. Harnessing PUF-Based Reporters for Noninvasive Imaging of the MicroRNA Dynamics in Differentiation. Anal Chem 2023; 95:4786-4794. [PMID: 36854667 DOI: 10.1021/acs.analchem.3c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Precise characterization of miRNA expression patterns is critical to exploit the complexity of miRNA regulation in biology. Herein, we developed a Pumilio/FBF (PUF) protein-based engineering luciferase reporter system, PUF/miR, to quantitatively and non-invasively sense miRNA activity in living cells and animal models. We verified the feasibility of this reporter by monitoring the expression of several types of miRNAs (miRNA-9, 124a, 1, and 133a) in neural and muscle differentiated cells as well as subcutaneous or tibial anterior muscles in mice. The quantitative RT-PCR also validated the reliability and quantitative consistency of bioluminescence imaging in detecting miRNA expression. We further effectively employed this reporter system to visualize the expression of miRNA-1 and miRNA-133a in mouse models of skeletal muscle injury. As a non-invasive and convenient innovative approach, our results have realized the positive bioluminescence imaging of endogenous miRNAs in vitro and in vivo using the PUF/miR system. We believe that this approach would provide a potential means for noninvasive monitoring of disease-related miRNAs and could facilitate a deeper understanding of miRNA biology.
Collapse
Affiliation(s)
- Xiaorui Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Chong Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yiyi Jiang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Bin Guo
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Beilei Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.,Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China.,School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020; 21:E7465. [PMID: 33050422 PMCID: PMC7590018 DOI: 10.3390/ijms21207465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Song Y, Xu Z, Wang F. Genetically Encoded Reporter Genes for MicroRNA Imaging in Living Cells and Animals. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:555-567. [PMID: 32721876 PMCID: PMC7390858 DOI: 10.1016/j.omtn.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by base paring with the complementary sequences of the target mRNAs, and then exert their function through degrading mRNA or inhibiting protein translation. They play a significant role as a regulatory factor in biological processes of organism development, cell proliferation, differentiation, and cell death. Some of the traditional methods for studying miRNAs, such as northern blot, real-time PCR, or microarray, have been extensively used to investigate the biological properties and expression patterns of miRNAs. However, these methods often require considerable time, cell samples, and the design of effective primers or specific probes. Therefore, in order to gain a deeper understanding of the role of miRNAs in biological processes and accelerate the clinical application of miRNAs in the field of disease treatment, non-invasive, sensitive, and efficient imaging methods are needed to visualize the dynamic expression of miRNAs in living cells and animals. In this study, we reviewed the recent progress in the genetically encoded reporter genes for miRNA imaging.
Collapse
Affiliation(s)
- Yingzhuang Song
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhijing Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Fu Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|