1
|
Zhang N, Wang X, Zhu C, Noraddin A, Yu Y, Wang X, Shi Y, Chen K, Liu X, Zhang Y, Yu Z. Synthesis and biological evaluation of new dual APN/NEP inhibitors as potent analgesics. Bioorg Chem 2025; 156:108210. [PMID: 39879827 DOI: 10.1016/j.bioorg.2025.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
An alternative approach for the management of acute and chronic pains involves prolonging the half-life of endogenous opiates, such as enkephalins that are released in response to nociceptive stimuli. This can be achieved through the inhibition of enzymatic pathways responsible for the hydrolysis of these peptides, particularly targeting Aminopeptidase N (APN) and Neutral Endopeptidase (NEP). In this study, we designed and synthesized a series of dual enkephalinase inhibitors (DENKIs) targeting both APN and NEP as novel analgesic treatments. Notably, SDUY812, SDUY816 and SDUY817 exhibited potent inhibition of APN activity with IC50 values of 0.38 µM, 0.68 µM and 0.29 µM, respectively, whereas their IC50 values against NEP were 6.9 µM, 6.9 µM and 7.4 µM, separately. In in-vivo antinociceptive assays, SDUY816 and SDUY817 demonstrated superior analgesic efficacy compared to Thiorphan and Bestatin in mice models of acute, inflammatory and neuropathic pains with jumping latencies exceeding 100 s and withdrawal thresholds more than 0.13 g. Moreover, the analgesic activity of these inhibitors was significantly diminished by a potent opioid antagonist, naloxone, indicating the contribution of opioid receptors to the robust analgesic properties of these newly developed DENKIs. In addition, SDUY816 and SDUY817 exerted the analgesic activity in a concentration- and time-dependent manner with SDUY816 possessing acceptable pharmacokinetic properties (t1/2 = 4.02 h and F = 27 %) and low toxicity. These findings provide alternative analgesic therapeutics that are potentially devoid of opioid-associated side effects.
Collapse
Affiliation(s)
- Naining Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chengchun Zhu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Amina Noraddin
- Immagina Biotechnology S.r.l, Viale dell'Industria 47, 38057 Pergine Valsugana, TN, Italy; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yan Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying Shi
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kai Chen
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, China
| | - Xiaoyu Liu
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Zhiyi Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Singh R, Jiang R, Williams J, Dobariya P, Hanak F, Xie J, Rothwell PE, Vince R, More SS. Modulation of endogenous opioid signaling by inhibitors of puromycin-sensitive aminopeptidase. Eur J Med Chem 2024; 275:116604. [PMID: 38917665 PMCID: PMC11236497 DOI: 10.1016/j.ejmech.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The endogenous opioid system regulates pain through local release of neuropeptides and modulation of their action on opioid receptors. However, the effect of opioid peptides, the enkephalins, is short-lived due to their rapid hydrolysis by enkephalin-degrading enzymes. In turn, an innovative approach to the management of pain would be to increase the local concentration and prolong the stability of enkephalins by preventing their inactivation by neural enkephalinases such as puromycin-sensitive aminopeptidase (PSA). Our previous structure-activity relationship studies offered the S-diphenylmethyl cysteinyl derivative of puromycin (20) as a nanomolar inhibitor of PSA. This chemical class, however, suffered from undesirable metabolism to nephrotoxic puromycin aminonucleoside (PAN). To prevent such toxicity, we designed and synthesized 5'-chloro substituted derivatives. The compounds retained the PSA inhibitory potency of the corresponding 5'-hydroxy analogs and had improved selectivity toward PSA. In vivo treatment with the lead compound 19 caused significantly reduced pain response in antinociception assays, alone and in combination with Met-enkephalin. The analgesic effect was reversed by the opioid antagonist naloxone, suggesting the involvement of opioid receptors. Further, PSA inhibition by compound 19 in brain slices caused local increase in endogenous enkephalin levels, corroborating our rationale. Pharmacokinetic assessment of compound 19 showed desirable plasma stability and identified the cysteinyl sulfur as the principal site of metabolic liability. We gained additional insight into inhibitor-PSA interactions by molecular modeling, which underscored the importance of bulky aromatic amino acid in puromycin scaffold. The results of this study strongly support our rationale for the development of PSA inhibitors for effective pain management.
Collapse
Affiliation(s)
- Rohit Singh
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Rongrong Jiang
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Jessica Williams
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | | | - Filip Hanak
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA.
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA.
| |
Collapse
|
3
|
Singh R, Jiang R, Williams J, Dobariya P, Hanak F, Xie J, Rothwell PE, Vince R, More SS. Modulation of endogenous opioid signaling by inhibitors of puromycin sensitive aminopeptidase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587756. [PMID: 38617237 PMCID: PMC11014559 DOI: 10.1101/2024.04.02.587756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The endogenous opioid system regulates pain through local release of neuropeptides and modulation of their action on opioid receptors. However, the effect of opioid peptides, the enkephalins, is short-lived due to their rapid hydrolysis by enkephalin-degrading enzymes. In turn, an innovative approach to the management of pain would be to increase the local concentration and prolong the stability of enkephalins by preventing their inactivation by neural enkephalinases such as puromycin sensitive aminopeptidase (PSA). Our previous structure-activity relationship studies offered the S-diphenylmethyl cysteinyl derivative of puromycin (20) as a nanomolar inhibitor of PSA. This chemical class, however, suffered from undesirable metabolism to nephrotoxic puromycin aminonucleoside (PAN). To prevent such toxicity, we designed and synthesized 5'-chloro substituted derivatives. The compounds retained the PSA inhibitory potency of the corresponding 5'-hydroxy analogs and had improved selectivity toward PSA. In vivo treatment with the lead compound 19 caused significantly reduced pain response in antinociception assays, alone and in combination with Met-enkephalin. The analgesic effect was reversed by the opioid antagonist naloxone, suggesting the involvement of opioid receptors. Further, PSA inhibition by compound 19 in brain slices caused local increase in endogenous enkephalin levels, corroborating our rationale. Pharmacokinetic assessment of compound 19 showed desirable plasma stability and identified the cysteinyl sulfur as the principal site of metabolic liability. We gained additional insight into inhibitor-PSA interactions by molecular modeling, which underscored the importance of bulky aromatic amino acid in puromycin scaffold. The results of this study strongly support our rationale for the development of PSA inhibitors for effective pain management.
Collapse
Affiliation(s)
- Rohit Singh
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Rongrong Jiang
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Jessica Williams
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | | | - Filip Hanak
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Patrick E. Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| |
Collapse
|