1
|
Jin F, Lin Y, Yuan W, Wu S, Yang M, Ding S, Liu J, Chen Y. Recent advances in c-Met-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2024; 272:116477. [PMID: 38733884 DOI: 10.1016/j.ejmech.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The cellular-mesenchymal epithelial transition factor (c-Met) is a receptor tyrosine kinase (RTK) located on the 7q31 locus encoding the Met proto-oncogene and plays a critical role in regulating cell proliferation, metastasis, differentiation, and apoptosis through various signaling pathways. However, its aberrant activation and overexpression have been implicated in many human cancers. Therefore, c-Met is a promising target for cancer treatment. However, the anticancer effect of selective single-targeted drugs is limited due to the complexity of the signaling system and the involvement of different proteins and enzymes. After inhibiting one pathway, signal molecules can be transmitted through other pathways, resulting in poor efficacy of single-targeted drug therapy. Dual inhibitors that simultaneously block c-Met and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, We introduced c-Met kinase and the synergism between c-Met and other anti-tumor targets, then dual-target inhibitors based on c-Met for the treatment of cancers were summarized and their design concepts and structure-activity relationships (SARs) were discussed elaborately, providing a valuable insight for the further development of novel c-Met-based dual inhibitors.
Collapse
Affiliation(s)
- Fanqi Jin
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Yihan Lin
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Weidong Yuan
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Min Yang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China.
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China.
| |
Collapse
|
2
|
Nan X, Wang QX, Xing SJ, Liang ZG. Design, synthesis, and biological evaluation of thiazole/thiadiazole carboxamide scaffold-based derivatives as potential c-Met kinase inhibitors for cancer treatment. J Enzyme Inhib Med Chem 2023; 38:2247183. [PMID: 37642355 PMCID: PMC10467532 DOI: 10.1080/14756366.2023.2247183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
As part of our continuous efforts to discover novel c-Met inhibitors as antitumor agents, four series of thiazole/thiadiazole carboxamide-derived analogues were designed, synthesised, and evaluated for the in vitro activity against c-Met and four human cancer cell lines. After five cycles of optimisation on structure-activity relationship, compound 51am was found to be the most promising inhibitor in both biochemical and cellular assays. Moreover, 51am exhibited potency against several c-Met mutants. Mechanistically, 51am not only induced cell cycle arrest and apoptosis in MKN-45 cells but also inhibited c-Met phosphorylation in the cell and cell-free systems. It also exhibited a good pharmacokinetic profile in BALB/c mice. Furthermore, the binding mode of 51am with both c-Met and VEGFR-2 provided novel insights for the discovery of selective c-Met inhibitors. Taken together, these results indicate that 51am could be an antitumor candidate meriting further development.
Collapse
Affiliation(s)
- Xiang Nan
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
- School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University Medical School, Shenzhen, China
| | - Qiu-Xu Wang
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shao-Jun Xing
- School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University Medical School, Shenzhen, China
| | - Zhi-Gang Liang
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Podrezova EV, Okhina AA, Rogachev AD, Baykov SV, Kirschning A, Yusubov MS, Soldatova NS, Postnikov PS. Ligand-free Ullmann-type arylation of oxazolidinones by diaryliodonium salts. Org Biomol Chem 2023; 21:1952-1957. [PMID: 36757159 DOI: 10.1039/d2ob02122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The arylation of azaheterocycles can be considered as one of the most important processes for the preparation of various biologically active compounds. In the present work, we describe a method for the copper-catalyzed N-arylation of hindered oxazolidinones using diaryliodonium salts. The method succeeds in good to excellent yields for the arylation of 4-alkyloxazolidinones, including sterically hindered isopropyl- and tert-butyl-substituted. The efficiency of the method was demonstrated for a wide range of diaryliodonium salts - symmetric and unsymmetric as well as ortho-substituted derivatives. The developed approach will provide an important contribution in the development and preparation of novel drugs and bioactive molecules containing oxazolidinone moieties.
Collapse
Affiliation(s)
- Ekaterina V Podrezova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Alina A Okhina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Sergey V Baykov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
4
|
Adel M. Kamal El-Dean, Geies AA, Hassanien R, Abdel-Wadood FK, El-Naeem EEA. Novel Synthesis, Reactions, and Biological Study of New Morpholino-Thieno[2,3-c][2,7]Naphthyridines as Anti-Cancer and Anti-Microbial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Bhojwani HR, Joshi UJ. Homology Modelling, Docking-based Virtual Screening, ADME Properties, and Molecular Dynamics Simulation for Identification of Probable Type II Inhibitors of AXL Kinase. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211004102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
AXL kinase is an important member of the TAM family for kinases which is
involved in most cancers. Considering its role in different cancers due to its pro-tumorigenic effects and its
involvement in the resistance, it has gained importance recently. Majority of research carried out is on Type I
inhibitors and limited studies have been carried out for Type II inhibitors. Taking this into consideration, we
have attempted to build Homology models to identify the Type II inhibitors for the AXL kinase.
Methods:
Homology Models for DFG-out C-helix-in/out state were developed using SWISS Model,
PRIMO, and Prime. These models were validated by different methods and further evaluated for stability
by molecular dynamics simulation using Desmond software. Selected models PED1-EB and PEDI1-EB
were used for the docking-based virtual screening of four compound libraries using Glide software. The
hits identified were subjected to interaction analysis and shortlisted compounds were subjected to Prime
MM-GBSA studies for energy calculation. These compounds were also docked in the DFG-in state to
check for binding and elimination of any compounds that may not be Type II inhibitors. The Prime energies
were calculated for these complexes as well and some compounds were eliminated. ADMET studies
were carried out using Qikprop. Some selected compounds were subjected to molecular dynamics simulation
using Desmond for evaluating the stability of the complexes.
Results:
Out of 78 models inclusive of both DFG-out C-helix-in and DFG-out C-helix-out, 5 models were
identified after different types of evaluation as well as validation studies. 1 model representing each type
(PED1-EB and PEDI1-EB) was selected for the screening studies. The screening studies resulted in the
identification of 29 compounds from the screen on PED1-EB and 10 compounds from the screen on
PEDI1-EB. Hydrogen bonding interactions with Pro621, Met623, and Asp690 were observed for these
compounds primarily. In some compounds, hydrogen bonding with Leu542, Glu544, Lys567, and
Asn677 as well as pi-pi stacking interactions with either Phe622 or Phe691 were also seen. 4 compounds
identified from PED1-EB screen were subjected to molecular dynamics simulation and their interactions
were found to be consistent during the simulation. 2 compounds identified from PEDI1-EB screen were
also subjected to the simulation studies, however, their interactions with Asp690 were not observed for a
significant time and in both cases differed from the docked pose.
Conclusion:
Multiple models of DFG-out conformations of AXL kinase were built, validated and used
for virtual screening. Different compounds were identified in the virtual screening, which may possibly
act as Type II inhibitors for AXL kinase. Some more experimental studies can be done to validate these
findings in future. This study will play a guiding role in the further development of the newer Type II
inhibitors of the AXL kinase for the probable treatment of cancer.
Collapse
Affiliation(s)
- Heena R. Bhojwani
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| | - Urmila J. Joshi
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| |
Collapse
|
6
|
Suri Babu U, Singam MKR, Kumar MN, Nanubolu JB, Sridhar Reddy M. Palladium-Catalyzed Carbo-Aminative Cyclization of 1,6-Enynes: Access to Napthyridinone Derivatives. Org Lett 2022; 24:1598-1603. [PMID: 35191708 DOI: 10.1021/acs.orglett.2c00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1,6-Enynes have recently stimulated enormous attention toward paving the way to unique cascade cyclizations offering complex cyclic motifs from linear substrates. We describe herein a general approach to napthyridinones via the Pd-catalyzed annulation of 1,6-enynes with 2-iodoanilines. This protocol represents a rare carbo-aminative annulative cyclization via the 6-endo-trig mode, subduing the well-documented exo-trig/dig cyclizations. The regioselective aryl palladation of alkyne followed by Heck-type intramolecular coupling before isomerization were key in realizing this cascade.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Muniganti Naveen Kumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
7
|
Soldatova NS, Semenov AV, Geyl KK, Baykov SV, Shetnev AA, Konstantinova AS, Korsakov MM, Yusubov MS, Postnikov PS. Copper‐Catalyzed Selective N‐Arylation of Oxadiazolones by Diaryliodonium Salts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia S. Soldatova
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies MIREA – Russian Technological University 86 Vernadskogo Pr Moscow 119571 Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry 16/10 Miklukho-Maklaya St. Moscow 117997 Russian Federation
| | - Kirill K. Geyl
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Sergey V. Baykov
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. Yaroslavl 150000 Russian Federation
| | - Anna S. Konstantinova
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mikhail M. Korsakov
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering Institute of Chemical Technology Prague 16628 Czech Republic
| |
Collapse
|
8
|
Zhuo LS, Wu FX, Wang MS, Xu HC, Yang FP, Tian YG, Zhao XE, Ming ZH, Zhu XL, Hao GF, Huang W. Structure-activity relationship study of novel quinazoline-based 1,6-naphthyridinones as MET inhibitors with potent antitumor efficacy. Eur J Med Chem 2020; 208:112785. [PMID: 32898795 DOI: 10.1016/j.ejmech.2020.112785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 01/25/2023]
Abstract
As a privileged scaffold, the quinazoline ring is widely used in the development of EGFR inhibitors, while few quinazoline-based MET inhibitors are reported. In our ongoing efforts to develop new MET-targeted anticancer drug candidates, a series of quinazoline-based 1,6-naphthyridinone derivatives were designed, synthesized, and evaluated for their biological activities. The preliminary SARs studies indicate that the quinazoline scaffold was also acceptable for the block A of class II MET inhibitors. The further pharmacokinetic studies led to the identification of the most promising compound 22a with favorable in vitro potency (MET, IC50 = 9.0 nM), human microsomal metabolic stability (t1/2 = 621.2 min) and oral bioavailability (F = 42%). Moreover, 22a displayed good in vivo antitumor efficacy (IR of 81% in 75 mg/kg) in MET-positive human glioblastoma U-87 MG xenograft model. These positive results indicated that 22a is a potential new MET-targeted antitumor drug lead, which is worthy of further development.
Collapse
Affiliation(s)
- Lin-Sheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Feng-Xu Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Hong-Chuang Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Fan-Peng Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yan-Guang Tian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Xing-E Zhao
- Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, 210042, PR China
| | - Zhi-Hui Ming
- Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, 210042, PR China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
9
|
Grignard Reagent Utilization Enables a Practical and Scalable Construction of 3-Substituted 5-Chloro-1,6-naphthyridin-4-one Derivatives. Molecules 2020; 25:molecules25235667. [PMID: 33271818 PMCID: PMC7730554 DOI: 10.3390/molecules25235667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
A robust, practical, and scalable approach for the construction of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 via the addition of Grignard reagents to 4-amino-2-chloronicotinonitrile (15) was developed. Starting with various Grignard reagents, a wide range of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 were conveniently synthesized in moderate-to-good yields through addition–acidolysis–cyclocondensation. In addition, the robustness and applicability of this synthetic route was proven on a 100 g scale, which would enable convenient sample preparation in the preclinical development of 1,6-naphthyridin-4-one-based MET-targeting antitumor drug candidates.
Collapse
|