1
|
Rawat A, Clark L, Zhang C, Cavin J, Sangwan VK, Toth PS, Janáky C, Ananth R, Goldfine E, Bedzyk MJ, Weiss EA, Rondinelli JM, Hersam MC, Meletis EI, Rajeshwar K. Solution Combustion Synthesis and Characterization of Magnesium Copper Vanadates. Inorg Chem 2023; 62:8903-8913. [PMID: 37260199 PMCID: PMC10266371 DOI: 10.1021/acs.inorgchem.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/02/2023]
Abstract
Magnesium vanadate (MgV2O6) and its alloys with copper vanadate were synthesized via the solution combustion technique. Phase purity and solid solution formation were confirmed by a variety of experimental techniques, supported by electronic structure simulations based on density functional theory (DFT). Powder X-ray diffraction combined with Rietveld refinement, laser Raman spectroscopy, diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy showed single-phase alloy formation despite the MgV2O6 and CuV2O6 end members exhibiting monoclinic and triclinic crystal systems, respectively. DFT-calculated optical band gaps showed close agreement in the computed optical bandgaps with experimentally derived values. Surface photovoltage spectroscopy, ambient-pressure photoemission spectroscopy, and Kelvin probe contact potential difference (work function) measurements confirmed a systematic variation in the optical bandgap modification and band alignment as a function of stoichiometry in the alloy composition. These data indicated n-type semiconductor behavior for all the samples which was confirmed by photoelectrochemical measurements.
Collapse
Affiliation(s)
- Abhishek Rawat
- Department
of Chemistry & Biochemistry, The University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Laura Clark
- Department
of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Chuzhong Zhang
- Department
of Materials Science and Engineering, The
University of Texas at Arlington, Arlington, Texas 76019, United States
| | - John Cavin
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Vinod K. Sangwan
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Peter S. Toth
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Csaba Janáky
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Riddhi Ananth
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Elise Goldfine
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Michael J. Bedzyk
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Emily A. Weiss
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - James M. Rondinelli
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Mark C. Hersam
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Efstathios I. Meletis
- Department
of Materials Science and Engineering, The
University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Krishnan Rajeshwar
- Department
of Chemistry & Biochemistry, The University
of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Jenewein KJ, Thienhaus S, Kormányos A, Ludwig A, Cherevko S. High-throughput exploration of activity and stability for identifying photoelectrochemical water splitting materials. Chem Sci 2022; 13:13774-13781. [PMID: 36544729 PMCID: PMC9710305 DOI: 10.1039/d2sc05115j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
The experimental high-throughput (HT) exploration for a suitable solar water splitting photoanode has greatly relied on photoactivity as the sole descriptor to identify a promising region within the searched composition space. Although activity is essential, it is not sufficient for describing the overall performance and excludes other pertinent criteria for photoelectrochemical (PEC) water splitting. Photostability in the form of (photo)electrocatalyst dissolution must be tracked to illustrate the intricate relation between activity and stability for multinary photoelectrocatalysts. To access these two important metrics simultaneously, an automated PEC scanning flow cell coupled to an inductively coupled plasma mass spectrometer (PEC-ICP-MS) was used to study an Fe-Ti-W-O thin film materials library. The results reveal an interrelation between composition, photocurrent density, and element-specific dissolution. These structure-activity-stability correlations can be represented using data science tools like principal component analysis (PCA) in addition to common data visualization approaches. This study demonstrates the importance of addressing two of the most important catalyst metrics (activity and stability) in a rapid and parallel fashion during HT experiments to adequately discover high-performing compositions in the multidimensional search space.
Collapse
Affiliation(s)
- Ken J Jenewein
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich Cauerstrasse 1 D-91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Sigurd Thienhaus
- Materials Discovery and Interfaces, Institute for Materials, Ruhr University Bochum Universitätsstraße 150 D-44801 Bochum Germany
- Center for Interface-Dominated High Performance Materials, Ruhr University Bochum, Universitätsstraße 150 D-44801 Bochum Germany
| | - Attila Kormányos
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich Cauerstrasse 1 D-91058 Erlangen Germany
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged Aradi Square 1 Szeged H-6720 Hungary
| | - Alfred Ludwig
- Materials Discovery and Interfaces, Institute for Materials, Ruhr University Bochum Universitätsstraße 150 D-44801 Bochum Germany
- Center for Interface-Dominated High Performance Materials, Ruhr University Bochum, Universitätsstraße 150 D-44801 Bochum Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich Cauerstrasse 1 D-91058 Erlangen Germany
| |
Collapse
|
3
|
Baues S, Vocke H, Harms L, Rücker KK, Wark M, Wittstock G. Combinatorial Screening of Cu-W Oxide-Based Photoanodes for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6590-6603. [PMID: 35076196 DOI: 10.1021/acsami.1c20837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal oxide libraries for photoanodes for the oxygen evolution reaction (OER) were generated by printing a metal salt solution in an array layout, followed by calcination to yield 22 ternary metal oxide systems. The libraries included a ternary metal cation system based on CuWO4 with one out of eight transition or posttransition metal ions Cr, Mn, Fe, Co, Ni, Zn, Bi, and Ga in different overall atomic ratios. The photocatalyst libraries were screened by scanning photoelectrochemical microscopy for the highest anodic photocurrents. Array elements that showed promising performance were printed in another set of eight libraries with smaller increments of overall composition. Improved performance with respect to CuWO4 was found for Ga, Co, and Ni as the third element. A comparison of the most active composition of those arrays within one library showed the highest activity for Cu48Ga3W49Ox. Printing spots of identical composition (Cu48Ga3W49Ox, Cu44Ni9W47Ox, and Cu44Co9W47Ox) over a larger area facilitated further characterization by X-ray photoelectron spectroscopy ultraviolet photoelectron spectroscopy (UPS), X-ray diffraction, scanning electron microscopy, chopped light voltammetry, and scanning electrochemical microscopy for the OER. High and stable steady-state photocurrents were generated in a photoelectrochemical cell for all three electrodes even at a low constant bias voltage. The best overall photoanode composition Cu48Ga3W49Ox showed currents that were 36 times higher than the currents of the binary Cu50W50Ox system. Significant n-doping was found by UPS valence band spectra for Ga-containing materials.
Collapse
Affiliation(s)
- Svenja Baues
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Heinrich Vocke
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Lena Harms
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Konstantin K Rücker
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Michael Wark
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Gunther Wittstock
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| |
Collapse
|
4
|
Pedersen JK, Clausen CM, Krysiak OA, Xiao B, Batchelor TAA, Löffler T, Mints VA, Banko L, Arenz M, Savan A, Schuhmann W, Ludwig A, Rossmeisl J. Bayesian Optimization of High‐Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jack K. Pedersen
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Christian M. Clausen
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Olga A. Krysiak
- Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Thomas A. A. Batchelor
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Tobias Löffler
- Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Vladislav A. Mints
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Lars Banko
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Matthias Arenz
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
5
|
Pedersen JK, Clausen CM, Krysiak OA, Xiao B, Batchelor TAA, Löffler T, Mints VA, Banko L, Arenz M, Savan A, Schuhmann W, Ludwig A, Rossmeisl J. Bayesian Optimization of High-Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction*. Angew Chem Int Ed Engl 2021; 60:24144-24152. [PMID: 34506069 PMCID: PMC8596574 DOI: 10.1002/anie.202108116] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High‐entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag‐Ir‐Pd‐Pt‐Ru and Ir‐Pd‐Pt‐Rh‐Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag–Pd, Ir–Pt, and Pd–Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.
Collapse
Affiliation(s)
- Jack K Pedersen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Christian M Clausen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Olga A Krysiak
- Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Thomas A A Batchelor
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Tobias Löffler
- Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.,Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.,ZGH, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Vladislav A Mints
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Lars Banko
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Matthias Arenz
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark.,Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.,ZGH, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| |
Collapse
|
6
|
Velasco L, Castillo JS, Kante MV, Olaya JJ, Friederich P, Hahn H. Phase-Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102301. [PMID: 34514669 PMCID: PMC11469218 DOI: 10.1002/adma.202102301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/29/2021] [Indexed: 05/27/2023]
Abstract
Exploring the vast compositional space offered by multicomponent systems or high entropy materials using the traditional route of materials discovery, one experiment at a time, is prohibitive in terms of cost and required time. Consequently, the development of high-throughput experimental methods, aided by machine learning and theoretical predictions will facilitate the search for multicomponent materials in their compositional variety. In this study, high entropy oxides are fabricated and characterized using automated high-throughput techniques. For intuitive visualization, a graphical phase-property diagram correlating the crystal structure, the chemical composition, and the band gap are introduced. Interpretable machine learning models are trained for automated data analysis and to speed up data comprehension. The establishment of materials libraries of multicomponent systems correlated with their properties (as in the present work), together with machine learning-based data analysis and theoretical approaches are opening pathways toward virtual development of novel materials for both functional and structural applications.
Collapse
Affiliation(s)
- Leonardo Velasco
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Juan S. Castillo
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Facultad de IngenieríaUniversidad Nacional de ColombiaAv. Cra. 30 # 45‐03, Ed. 407, Ciudad UniversitariaBogotáDC111321Colombia
- Joint Research Laboratory NanomaterialsTechnische Universität DarmstadtOtto‐Berndt‐Str. 364206DarmstadtGermany
| | - Mohana V. Kante
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Joint Research Laboratory NanomaterialsTechnische Universität DarmstadtOtto‐Berndt‐Str. 364206DarmstadtGermany
| | - Jhon J. Olaya
- Facultad de IngenieríaUniversidad Nacional de ColombiaAv. Cra. 30 # 45‐03, Ed. 407, Ciudad UniversitariaBogotáDC111321Colombia
| | - Pascal Friederich
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyAm Fasanengarten 576131KarlsruheGermany
| | - Horst Hahn
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Joint Research Laboratory NanomaterialsTechnische Universität DarmstadtOtto‐Berndt‐Str. 364206DarmstadtGermany
| |
Collapse
|